Attributes { s { study_name { String cf_role "trajectory_id"; String column_name "studyName"; String comment "Cruise name"; String ioos_category "Identifier"; String long_name "Study"; } event { Int16 _FillValue 32767; Int16 actual_range 6, 790; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String column_name "col_588"; String comment "Event number from event log"; String ioos_category "Statistics"; String long_name "Event Number"; String lter_mscale "interval"; String lter_num_type "real"; String lter_units_string "number"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER"; } station { String column_name "col_589"; String comment "Palmer LTER grid station"; String ioos_category "Identifier"; String long_name "Station Name"; String lter_mscale "nominal"; } bottle { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 25; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String column_name "col_590"; String comment "Reference number of sample bottle from rosette"; String ioos_category "Statistics"; String long_name "Bottle Number"; String lter_mscale "interval"; String lter_num_type "natural"; String lter_units_string "number"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER"; } time { String _CoordinateAxisType "Time"; Float64 actual_range 1.041816952e+9, 1.5492384e+9; String axis "T"; String calendar "proleptic_gregorian"; String column_name "col_591"; String comment "Datetime GMT from CTD bottle trip record"; String ioos_category "Time"; String long_name "Datetime GMT"; String lter_mscale "dateTime"; String standard_name "time"; String time_origin "01-JAN-1970 00:00:00"; String units "seconds since 1970-01-01T00:00:00Z"; } latitude { String _CoordinateAxisType "Lat"; Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -70.088, -63.59; String axis "Y"; Float64 colorBarMaximum 90.0; Float64 colorBarMinimum -90.0; String column_name "col_4476"; String comment "Latitude from CTD bottle trip record"; String ioos_category "Location"; String long_name "Latitude"; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "º"; String lter_units_string "degree"; String standard_name "latitude"; String units "degrees_north"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER"; } longitude { String _CoordinateAxisType "Lon"; Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -78.208, -64.02944; String axis "X"; Float64 colorBarMaximum 180.0; Float64 colorBarMinimum -180.0; String column_name "col_4477"; String comment "Longitude from CTD bottle trip record"; String ioos_category "Location"; String long_name "Longitude"; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "º"; String lter_units_string "degree"; String standard_name "longitude"; String units "degrees_east"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER"; } depth { String _CoordinateAxisType "Height"; String _CoordinateZisPositive "down"; Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -999.0, 5000.0; String axis "Z"; Float64 colorBarMaximum 8000.0; Float64 colorBarMinimum -8000.0; String colorBarPalette "TopographyDepth"; String column_name "col_592"; String comment "Target depth for sample. Not actual depth from instrument record"; String ioos_category "Location"; String long_name "Depth"; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "m"; String lter_units_string "meter"; String positive "down"; String standard_name "depth"; String units "m"; String units_conventions "AND-LTER,BNZ-LTER,CDR-LTER,EML-2.0.1,EML-2.1.0,EML-LTER,LUQ-LTER,SGS-LTER"; } bacterial_cell_count { Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -999.0, 4.9e+9; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String column_name "col_593"; String comment "Bacterial abundance"; String ioos_category "Statistics"; String long_name "Abundance"; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "num/L"; String lter_units_string "numberPerLiter"; String units "count L-1"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER,NTL-LTER"; } thymidine { Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -999.0, 8.08; String column_name "col_594"; String comment "incorporation of nutrients"; String ioos_category "Unknown"; String long_name "Thymidine Incorp."; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "pmol/L/hr"; String lter_units_string "picomolePerLiterPerHour"; String units "picomol L-1 hr-1"; String units_conventions "PAL-LTER"; } leucine { Float64 _FillValue 9.969209968386869e+36; Float64 actual_range -999.0, 858.48; String column_name "col_595"; String comment "incorporation of nutrients"; String ioos_category "Unknown"; String long_name "Leucine Incorp."; String lter_mscale "ratio"; String lter_num_type "real"; String lter_units "pmol/L/hr"; String lter_units_string "picomolePerLiterPerHour"; String units "picomol L-1 hr-1"; String units_conventions "PAL-LTER"; } hna_cell_concentration { Float64 _FillValue 9.969209968386869e+36; Float64 actual_range 0.0, 2.9e+9; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String column_name "col_5313"; String comment "High nucleic acid containing bacterial cells"; String ioos_category "Statistics"; String long_name "HNA"; String lter_mscale "ratio"; String lter_num_type "integer"; String lter_units "num/L"; String lter_units_string "numberPerLiter"; String units "count L-1"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER,NTL-LTER"; } lna_cell_concentration { Float64 _FillValue 9.969209968386869e+36; Float64 actual_range 0.0, 6.44384615e+8; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String column_name "col_5314"; String comment "Low nucleic acid containing bacterial cells"; String ioos_category "Statistics"; String long_name "LNA"; String lter_mscale "ratio"; String lter_num_type "integer"; String lter_units "num/L"; String lter_units_string "numberPerLiter"; String units "count L-1"; String units_conventions "EML-2.0.1,EML-2.1.0,EML-LTER,NTL-LTER"; } notes { String column_name "col_3698"; String comment "Sampling and analysis notes"; String ioos_category "Unknown"; String long_name "Notes"; String lter_mscale "nominal"; } } NC_GLOBAL { String _NCProperties "version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.6"; String acknowledgement "Funding and support provided by the National Science Foundation"; String cdm_data_type "Trajectory"; String cdm_trajectory_variables "study_name"; String comment "The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes. A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels. In addition to the long-term field and research activities, information management, graduate student training, education and outreach are an integral part of the program."; String contributor_email "hducklow@ldeo.columbia.edu"; String contributor_name "Hugh Ducklow"; String contributor_role "PrincipalInvestigator"; String contributor_role_vocabulary "https://vocab.nerc.ac.uk/collection/G04/current/"; String Conventions "CF-1.8, ACDD-1.3, COARDS"; String creator_country "USA"; String creator_email "kerfoot@marine.rutgers.edu"; String creator_institution "Rutgers University"; String creator_name "John Kerfoot"; String creator_sector "academic"; String creator_type "person"; String creator_url "https://rucool.marine.rutgers.edu"; String datazoo_dataset_id "48"; String datazoo_datatable_id "48"; String datazoo_datatable_label "Bacteria (Cruise)"; String datazoo_datatable_name "Bacteria"; String date_created "2021-05-07T15:54:36Z"; String date_issued "2021-05-07T15:54:36Z"; String defaultDataQuery "null"; String defaultGraphQuery "longitude,latitude,time&.draw=markers&.marker=6%7C5&.color=0x000000&.colorBar=%7C%7C%7C%7C%7C&.bgColor=0xffccccff"; String doi "https://doi.org/10.6073/pasta/32683b1152c89e8eb8879639146b34fe"; Float64 Easternmost_Easting -64.02944; String featureType "Trajectory"; String geospatial_bounds_crs "EPSG:4326"; String geospatial_bounds_vertical_crs "EPSG:5831"; Float64 geospatial_lat_max -63.59; Float64 geospatial_lat_min -70.088; String geospatial_lat_resolution "0.00001 degree"; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max -64.02944; Float64 geospatial_lon_min -78.208; String geospatial_lon_resolution "0.00001 degree"; String geospatial_lon_units "degrees_east"; Float64 geospatial_vertical_max 5000.0; Float64 geospatial_vertical_min -999.0; String geospatial_vertical_positive "down"; String geospatial_vertical_units "m"; String history "local files 2025-05-04T18:13:08Z (local files) 2025-05-04T18:13:08Z http://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseBacteria.das"; String infoUrl "https://pal.lternet.edu/"; String institution "National Science Foundation"; String keywords "amino acids, bacteria, bacterial abundance, leucine, oceans, Organic Matter, Population Studies"; String keywords_vocabulary "LTER Controlled Vocabulary,LTER Core Areas"; String license "All data contained herein is licensed under the LTER Network Data Access Policy (https://lternet.edu/data-access-policy/). In accordance with scientific publishing conventions and professional etiquette, the consumer of these data (the \"Data User\") is expected to appropriately cite these data in any publication that results from their use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur and should realize that misinterpretation of data may occur if used out of context of the original study. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the data authors. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available \"as is.\" The Data User should be aware that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data."; String license_link "https://lternet.edu/data-access-policy/"; String methods "General Methods: Water samples for all microbial analyses are harvested from the CTD-Rosette system. Bacterial abundance samples are analyzed within two hours by flow cytometry following the protocol of Gasol and del Giorgio (2000), with SYBR-Green staining on an Accuri C6 (Becton-Dickinson). Total bacteria concentrations were determined by adding 1 ?m microspheres (Polysciences, Warrington, PA) and 5 ?M final concentration of stain to 0.5 mL of sample. Samples were incubated in the dark for 30 minutes and analyzed for 2 minutes at a low flow rate. Numbers of total bacteria and beads were determined in cytograms of side scatter (SSC) versus green fluorescence (FL1). Calculation of the absolute concentration of stained particles was based on the total sample volume analyzed, as determined by the count of added microspheres.\\n\\nBacterial Production\\nBacterial Production (BP) rates were derived from rates of 3H-leucine incorporation measured on samples extending over the upper 50-100 m. The leucine assays followed a procedure modified from the protocol originally proposed by Smith and Azam (1992). Briefly, triplicate 1.5 ml samples were incubated shortly after collection for ~3 h with 3H-leucine (MP Biomedical, Santa Ana, CA; >100 Ci/mmol, 20-25 nM final concentration) in 2.0 ml microcentrifuge tubes (Axygen SCT-200, Union City, CA). Incubations were maintained within 0.5°C of the in situ temperature in refrigerated circulator baths and terminated by the addition of 0.1 ml of 100% trichloroacetic acid (TCA). Samples were concentrated by centrifugation, rinsed with 5% TCA and 70% ethanol and air-dried overnight prior to radioassay by liquid scintillation counting in Ultima Gold cocktail (Perkin-Elmer, Waltham, MA). Blank values of TCA-killed samples were subtracted from the average of the triplicates for each discrete depth sample. BP rates are derived by multiplying the leucine incorporation rate times 1500 gC mole-1 (Ducklow et al (2000).\\n\\n"; String naming_authority "edu.rutgers.rucool"; Float64 Northernmost_Northing -63.59; String product_version "1.0"; String program "LTER"; String project "Palmer LTER"; String publisher_country "USA"; String publisher_email "kerfoot@marine.rutgers.edu"; String publisher_institution "Rutgers University"; String publisher_name "John Kerfoot"; String publisher_type "person"; String publisher_url "https://rucool.marine.rutgers.edu"; String references "https://pal.lternet.edu/,Gasol JM, Del Giorgio PA. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. SCIENTIA MARINA 64: 197-224.,Smith DC, Azam F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Foodwebs 6: 107-114.,Ducklow HW, Dickson ML, Kirchman DL, Steward G, Orchardo J, Marra J, Azam F. 2000. Constraining bacterial production, conversion efficiency and respiration in the Ross Sea, Antarctica, January-February, 1997. Deep-Sea Research II 47: 3227-3247.\\n"; String sea_name "Southern Ocean"; String source "local files"; String sourceUrl "(local files)"; Float64 Southernmost_Northing -70.088; String standard_name_vocabulary "CF Standard Name Table v77"; String subsetVariables "study_name,station"; String summary "Bacterial properties in discrete water column samples at selected depths, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 2003 - 2019. The microbial biogeochemistry component of PAL focuses on marine bacterioplankton, and is thus a counterpart to the phytoplankton and zooplankton components, which together provide a detailed and comprehensive description of plankton ecology in PAL-LTER. Bacteria and Archaea (hereafter called \"bacteria\") are taxonomically and metabolically diverse. In coastal and offshore surface waters Bacteria generally predominate over Archaea, but Archaea are equal or greater in abundance in the mesopelagic layer below the euphoric zone. We focus on aerobic, heterotrophic bacteria in the upper 100 m on the annual summer cruise. These bacteria oxidize recently-produced low molecular weight dissolved organic compounds released by phytoplankton and zooplankton, decomposing them back into CO2 and inorganic nutrients. Globally, marine bacteria respire an amount of carbon roughly equal to about half the daily photosynthetic production. In cold polar waters, relative bacterial activity is lower, with bacterial biomass production being equal to <5% of the daily photosynthesis. The ratio at lower latitudes is 10-20%. The factors responsible for this contrast are not entirely clear. Resolving this pattern is a key aim of the PAL microbial component. Bacterial production is generally low across the grid, relative to primary production, but with considerable spatial and annual variability. Discrete BP can reach >200mgC/m2/d following bloom-fueled high organic matter events. Across the grid and over years, BP is highly correlated with chlorophyll, highlighting the close relationship with phytoplanktonic organic matter production."; String time_coverage_end "2019-02-04T00:00:00Z"; String time_coverage_start "2003-01-06T01:35:52Z"; String title "Bacterial properties in discrete water column samples at selected depths, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 2003, 2019."; Float64 Westernmost_Easting -78.208; } }