NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietFish.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietFish https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietFish.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinDietFish/ Adelie penguin diet composition, fish species and numbers, 1991, present. Adelie penguin diet composition, fish species and numbers, 1991 - present. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\n\\nFish occur frequently in Adélie penguin diets but rarely as whole specimens, hence recording their presence in sorted subsamples (see DIET) is generally limited to noting the incidence of skin, flesh, bones, eyes and especially otoliths.  With the exception of otoliths, the weights of these items are obtained if warranted by the sample size.  Otoliths can be used to identify individual fish species, and in combination with regression equations based on otolith length and width, can also be used to reconstitute fish length and mass.  However, because the expertise needed to identify fish from otoliths does not exist within the PAL program, otolith identification is performed by off-site experts as time and funding allow.  This results in long lags between the time otoliths are collected and integrated with the appropriate databases, meaning that understanding the role of fish in Adélie penguin diets still remains a longer-term objective of PAL.   \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\n... (12 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinDietFish/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinDietFish.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinDietFish&showErrors=false&email= National Science Foundation AdeliePenguinDietFish
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba/ Adelie penguin diet composition, secondary prey items, 1991, present.\\t Adelie penguin diet composition, secondary prey items, 1991 - present.\\t. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nBesides krill and fish, a number of secondary prey items (see DIET) can be found in Adélie penguin diets, including octopus, squid, amphipods, mysid shrimp, limpets and small clams.  One or more of these prey types may occur frequently in the samples, but very rarely in abundance, hence recorded metrics are limited to detailing the number of specimens observed and obtaining weights if warranted by the sample size.  One exception concerns squid and octopus beaks, which like fish otoliths can be identified to species and the size and mass of individuals reconstituted based on regressions that use beak length to determine relational metrics.  Like otoliths, beaks are also processed by experts outside PAL (see FISH), hence similar time lags exist in database integration.  What role these less abundant prey items have in  Adélie penguin diets is unknown, but paleoecological evidence suggests that squid in particular were once consumed much more frequently in the PAL region than they are now.\\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\n... (11 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba&showErrors=false&email= National Science Foundation AdeliePenguinDietPreyOtherThanFishAndEuphausiaSuberba
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusStationaryWinter/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, 1999 and 2001. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the pelagic abundance and distribution of Adelie Penguins, 2) examining how the physical and biological characteristics of the marine environment influence these parameters and, 3) using these data to identify foraging areas that may be important to Adelie populations being studied as part of land-based  work at Palmer Station.  Secondary objectives included documenting the abundance and distribution of other seabirds and marine mammals within the LTER study area.  The focus of the January cruise was the nearshore foraging habitat,which required sampling at smaller scales.  All seabird censuses were thus conducted within approximately 100 kms of Palmer Station while traversing a sampling grid with stations at 10km intervals.  The first two days (18-20 January) of this cruise were spent covering the selected grid as rapidly as possible resulting in 45 transects spaced at 45-60 minute intervals.  There were no stops at the 10km stations during this Fast Grid phase.  Upon completion of the Fast Grid, a force 12 gale suspended data collection for 24 hours.  From January 22-25 the grid direction was reversed and the grid repeated.  During this Slow Grid phase, 2-M net tows were done at 10km intervals and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censusesduring the cruise were done using the procedures outlined in theprevious paragraph.\n\ncdm_data_type = Trajectory\nVARIABLES:\nevent\ncruise_id\nstudy_name (Study)\ndepth (m)\nlatitude (degrees_north)\nlongitude (degrees_east)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ngrid_line (km)\ngrid_station (km)\nsea_state\nsalinity (Sea Water Practical Salinity, 1)\n... (14 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/BirdCensusStationaryWinter_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/BirdCensusStationaryWinter_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusStationaryWinter/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusStationaryWinter.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusStationaryWinter&showErrors=false&email= National Science Foundation BirdCensusStationaryWinter
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusMovingSummer.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusMovingSummer https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusMovingSummer.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusMovingSummer/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, 2018. At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993 - 2018. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the pelagic abundance and distribution of Adelie Penguins, 2) examining how the physical and biological characteristics of the marine environment influence these parameters and, 3) using these data to identify foraging areas that may be important to Adelie populations being studied as part of land-based work at Palmer Station.  Secondary objectives included documenting the abundance and distribution of other seabirds and marine mammals within the LTER study area.  The focus of the January cruise was the nearshore foraging habitat,which required sampling at smaller scales.  All seabird censuses were thus conducted within approximately 100 kms of Palmer Station while traversing a sampling grid with stations at 10km intervals.  The first two days (18-20 January) of this cruise were spent covering the selected grid as rapidly as possible resulting in 45 transects spaced at 45-60 minute intervals.  There were no stops at the 10km stations during this Fast Grid phase.  Upon completion of the Fast Grid, a force 12 gale suspended data collection for 24 hours.  From January 22-25 the grid direction was reversed and the grid repeated.  During this Slow Grid phase, 2-M net tows were done at 10km intervals and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censuses during the cruise were done using the procedures outlined in the previous paragraph.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ncruise_id\nevent\nsample_minutes_from_start (minutes)\nspecies_code\nnumber_items (1)\nnum_linkages (1)\nbehavior\ndirection\nnotes\n https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusMovingSummer/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusMovingSummer.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusMovingSummer&showErrors=false&email= National Science Foundation BirdCensusMovingSummer
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationarySummer.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationarySummer https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationarySummer.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusStationarySummer/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, 2018. At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993 - 2018. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the  pelagic abundance and distribution of Adelie Penguins, 2) examining  how the physical and biological characteristics of the marine  environment influence these parameters and, 3) using these data to  identify foraging areas that may be important to Adelie populations  being studied as part of land-based  work at Palmer Station.   Secondary objectives included documenting the abundance and  distribution of other seabirds and marine mammals within the LTER  study area.  The focus of the January cruise was the nearshore foraging habitat, which required sampling at smaller scales.  All seabird censuses  were thus conducted within approximately 100 kms of Palmer Station  while traversing a sampling grid with stations at 10km intervals.   The first two days (18-20 January) of this cruise were spent covering  the selected grid as rapidly as possible resulting in 45 transects  spaced at 45-60 minute intervals.  There were no stops at the 10km  stations during this Fast Grid phase.  Upon completion of the Fast Grid,  a force 12 gale suspended data collection for 24 hours.  From  January 22-25 the grid direction was reversed and the grid repeated.   During this Slow Grid phase, 2-M net tows were done at 10km intervals  and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censuses during the cruise were done using the procedures outlined in the previous paragraph.\\n\\nSeventy-two 30-minute transects and 15 station censuses were completed during the January cruise.  Athough seabirds were widely  distributed  throughout the  study  area,  the highest  densities and  greatest  biomass occurred consistently within 2-5 km of Anvers Island and  several major  island  groups to the south and \\nwest  near  the  Antarctic Peninsula.   Adelie Penguins were the  dominant component of  this seabird  assemblage  in  terms of  both   abundance  and  biomass.  South Polar Skuas ranked second and Black-browed Albatross third, with the latter becoming the dominant assemblage member at distances greater than 10km from land.  Although  \\nSouth Polar Skuas had been expected to occur in more pelagic  habitats, few were censused at distances greater than 10km from land.   The presence  of  both  skuas  and penguins  so close  to  land  was unexpected.  The  most  important  variable accounting for  variation  in  the distribution  and  abundance  of  seabirds  appeared  to  \\nbe  the location  of  the 200m contour, which throughout the  study  area occurred 2-5km from the adjoining land masses.  Approximately 65% of the seabirds censused during this cruise (85% of the  biomass) occurred  in  association with this contour.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (25 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/BirdCensusStationarySummer_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/BirdCensusStationarySummer_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusStationarySummer/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusStationarySummer.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusStationarySummer&showErrors=false&email= National Science Foundation BirdCensusStationarySummer
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CetaceanBiopsies https://pallter-data.marine.rutgers.edu/erddap/tabledap/CetaceanBiopsies.graph https://pallter-data.marine.rutgers.edu/erddap/files/CetaceanBiopsies/ Skin-blubber biopsy samples and associated demographic data collected from cetaceans encountered along the Western Antarctic Peninsula (WAP), 2010 - present. \\n The collection of biopsy samples from cetaceans within the near-shore waters of the Western Antarctic Peninsula (WAP) has been led by Dr. Ari Friedlaender starting in 2010. The Friedlaender group just recently joined the Palmer LTER in 2015, but prior collection of samples was leveraged from previous National Science Foundation (NSF) support and existing collaborations with Antarctic tour operations. Collection methods have been kept consistent, as the research group attempts to sample every whale encountered. Our current data set consists of three targeted species for collection, the humpback whale (Megaptera novaeangliae), Antarctic minke whale (Balaenoptera bonaerensis), and killer whales (Orcinus orca). Sample are kept frozen at -80°C until analysis following the completion of annual field work. Collection of these samples is still ongoing. The biopsy ID is the unique identifier for each collected sample and is used as the common field among the different analyses that are conducted on the sample to look at population and individual level demographic information. From these tissue samples, we can extract nuclear and mitochondrial DNA which provides us with information on the genetic sex, genotype (gene fingerprint), as well as haplotype of the individuals sampled. Additionally, from the blubber layer of the biopsy sample, our group can now successfully detect and quantify sex-steroid hormones, one of which is progesterone, that allows us to make inference on the pregnancy status of sampled individuals. Lastly, more recent work has begun to assess the microbial communities on the skin layer of the biopsy samples. Combined, these biological analyses provide an in depth understanding of the current population demographics and dynamics in these recovering marine species.     \\n\n\ncdm_data_type = Point\nVARIABLES:\nbiopsy_id\nspecies_code\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nsex\ntag_id\nphoto_frames\nhaplotype\ngenotype\nprogresterone\nmicrobiome\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CetaceanBiopsies_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CetaceanBiopsies_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CetaceanBiopsies/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CetaceanBiopsies.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CetaceanBiopsies&showErrors=false&email= National Science Foundation CetaceanBiopsies

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact