NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinDietLog/ Adelie penguin diet metadata, 1991, present. Adelie penguin diet metadata, 1991 - present. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\n\\nAdélie penguin diet samples are obtained during the chick-rearing phase of the breeding season (January -February) using stomach lavage (water off-loading method).  Five adult penguins are typically sampled every 5-7 days (weather permitting) during this period by capturing birds near their breeding colonies as they return from foraging in the evenings.  Before lavaging, birds are weighed and measured to obtain an index of gender and condition, and are then released at the site where they were initially captured.  Variability in adult condition within and between seasons provides an important index of foraging effort and other related metrics.      \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Sample Date/Time, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinDietLog/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinDietLog.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinDietLog&showErrors=false&email= National Science Foundation AdeliePenguinDietLog
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinBandsSeen/ Adelie penguin flipper band resightings, 1991, 2006. Adelie penguin flipper band resightings, 1991 - 2006. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\n Annually between 1991 and 1998, a subsample of 1000 Adélie penguin crèche-age chicks were flipper-banded on Humble Island as part of demographic studies to determine long-term survival and recruitment.  This was achieved through resighting efforts in the years that followed the banding work through 2006 when the last banded bird was observed.  The decision to end the banding studies is in concordance with other national and international efforts to limit this work due to evidence that flipper- banding penguins may affect survival.   \\n\n\ncdm_data_type = Other\nVARIABLES:\nindex\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinBandsSeen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinBandsSeen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinBandsSeen&showErrors=false&email= National Science Foundation AdeliePenguinBandsSeen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CetaceanBiopsies https://pallter-data.marine.rutgers.edu/erddap/tabledap/CetaceanBiopsies.graph https://pallter-data.marine.rutgers.edu/erddap/files/CetaceanBiopsies/ Skin-blubber biopsy samples and associated demographic data collected from cetaceans encountered along the Western Antarctic Peninsula (WAP), 2010 - present. \\n The collection of biopsy samples from cetaceans within the near-shore waters of the Western Antarctic Peninsula (WAP) has been led by Dr. Ari Friedlaender starting in 2010. The Friedlaender group just recently joined the Palmer LTER in 2015, but prior collection of samples was leveraged from previous National Science Foundation (NSF) support and existing collaborations with Antarctic tour operations. Collection methods have been kept consistent, as the research group attempts to sample every whale encountered. Our current data set consists of three targeted species for collection, the humpback whale (Megaptera novaeangliae), Antarctic minke whale (Balaenoptera bonaerensis), and killer whales (Orcinus orca). Sample are kept frozen at -80°C until analysis following the completion of annual field work. Collection of these samples is still ongoing. The biopsy ID is the unique identifier for each collected sample and is used as the common field among the different analyses that are conducted on the sample to look at population and individual level demographic information. From these tissue samples, we can extract nuclear and mitochondrial DNA which provides us with information on the genetic sex, genotype (gene fingerprint), as well as haplotype of the individuals sampled. Additionally, from the blubber layer of the biopsy sample, our group can now successfully detect and quantify sex-steroid hormones, one of which is progesterone, that allows us to make inference on the pregnancy status of sampled individuals. Lastly, more recent work has begun to assess the microbial communities on the skin layer of the biopsy samples. Combined, these biological analyses provide an in depth understanding of the current population demographics and dynamics in these recovering marine species.     \\n\n\ncdm_data_type = Point\nVARIABLES:\nbiopsy_id\nspecies_code\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nsex\ntag_id\nphoto_frames\nhaplotype\ngenotype\nprogresterone\nmicrobiome\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CetaceanBiopsies_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CetaceanBiopsies_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CetaceanBiopsies/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CetaceanBiopsies.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CetaceanBiopsies&showErrors=false&email= National Science Foundation CetaceanBiopsies
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins.graph https://pallter-data.marine.rutgers.edu/erddap/files/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins/ Structural size measurements and isotopic signatures of foraging among adult male and female Adélie penguins (Pygoscelis adeliae) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins near Palmer Station, Antarctica, asking whether environmental variability in the form of winter sea ice is associated with differences in male and female pre-breeding foraging niche. Each season, study nests, where pairs of adults were present, were individually marked and chosen before the onset of egg-laying, and consistently monitored. When study nests were found at the one-egg stage, both adults were captured to obtain blood samples used for molecular sexing and stable isotope analyses, and measurements of structural size and body mass. At the time of capture, each adult penguin was quickly blood sampled (~1 ml) from the brachial vein. After handling, individuals at study nests were further monitored to ensure the pair reached clutch completion, i.e., two eggs. Molecular analyses were conducted at Simon Fraser University following standard PCR protocols, and stable isotope analyses were conducted at the Stable Isotope Facility at the University of California, Davis using an elemental analyzer interfaced with an isotope ratio mass spectrometer\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\nsample_number\nspecies\nregion\nisland_name\nreproductive_stage\nindividual_id\nfull_clutch\ntime (seconds since 1970-01-01T00:00:00Z)\nculmen_length (mm)\nculmen_depth (mm)\nflipper_length (mm)\nbody_mass (grams)\nsex\nratio_of_15n_to_14n (percent)\nratio_of_13c_to_12c (percent)\ncomments\n https://pallter-data.marine.rutgers.edu/erddap/info/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins&showErrors=false&email= National Science Foundation StructuralSizeMeasurementsAndIsotopicSignaturesAdeliePenguins
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins.graph https://pallter-data.marine.rutgers.edu/erddap/files/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins/ Structural size measurements and isotopic signatures of foraging among adult male and female Chinstrap penguins (Pygoscelis antarcticus) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins near Palmer Station, Antarctica, asking whether environmental variability in the form of winter sea ice is associated with differences in male and female pre-breeding foraging niche. Each season, study nests, where pairs of adults were present, were individually marked and chosen before the onset of egg-laying, and consistently monitored. When study nests were found at the one-egg stage, both adults were captured to obtain blood samples used for molecular sexing and stable isotope analyses, and measurements of structural size and body mass. At the time of capture, each adult penguin was quickly blood sampled (~1 ml) from the brachial vein. After handling, individuals at study nests were further monitored to ensure the pair reached clutch completion, i.e., two eggs. Molecular analyses were conducted at Simon Fraser University following standard PCR protocols, and stable isotope analyses were conducted at the Stable Isotope Facility at the University of California, Davis using an elemental analyzer interfaced with an isotope ratio mass spectrometer\n\ncdm_data_type = Other\nVARIABLES:\ntime (Date Egg, seconds since 1970-01-01T00:00:00Z)\nsample_number\nspecies\nregion\nisland_name (Island)\nreproductive_stage (Stage)\nindividual_id\nfull_clutch (Clutch Completion)\ndorsal_ridge_length (Culmen Length)\ndorsal_ridge_depth (Culmen Depth, mm)\nflipper_length\nbody_mass (grams)\nsex\nratio_15n_14n (Delta 15 N, 1)\nratio_13c_12c (Delta 13 C, 1)\nnotes (Comments)\n https://pallter-data.marine.rutgers.edu/erddap/info/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins&showErrors=false&email= National Science Foundation StructuralSizeMeasurementsAndIsotopicSignaturesChinstrapPenguins
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins https://pallter-data.marine.rutgers.edu/erddap/tabledap/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins.graph https://pallter-data.marine.rutgers.edu/erddap/files/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins/ Structural size measurements and isotopic signatures of foraging among adult male and female gentoo penguins (Pygoscelis papua) nesting along the Palmer Archipelago near Palmer Station, 2007-2009 Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins near Palmer Station, Antarctica, asking whether environmental variability in the form of winter sea ice is associated with differences in male and female pre-breeding foraging niche. Each season, study nests, where pairs of adults were present, were individually marked and chosen before the onset of egg-laying, and consistently monitored. When study nests were found at the one-egg stage, both adults were captured to obtain blood samples used for molecular sexing and stable isotope analyses, and measurements of structural size and body mass. At the time of capture, each adult penguin was quickly blood sampled (~1 ml) from the brachial vein. After handling, individuals at study nests were further monitored to ensure the pair reached clutch completion, i.e., two eggs. Molecular analyses were conducted at Simon Fraser University following standard PCR protocols, and stable isotope analyses were conducted at the Stable Isotope Facility at the University of California, Davis using an elemental analyzer interfaced with an isotope ratio mass spectrometer\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\nsample_number\nspecies\nregion\nisland_name\nreproductive_stage\nindividual_id\nfull_clutch\ntime (seconds since 1970-01-01T00:00:00Z)\nculmen_length (mm)\nculmen_depth (mm)\nflipper_length (mm)\nbody_mass (grams)\nsex\nratio_of_15n_to_14n (percent)\nratio_of_13c_to_12c (percent)\ncomments\n https://pallter-data.marine.rutgers.edu/erddap/info/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins&showErrors=false&email= National Science Foundation StructuralSizeMeasurementsAndIsotopicSignaturesGentooPenguins

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact