NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicNutrients/ Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991, 2019. Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991 - 2019. The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every Conductivity, Temperature, Depth (CTD)/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (17 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicNutrients_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicNutrients_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicNutrients/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicNutrients.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicNutrients&showErrors=false&email= National Science Foundation CruiseDissolvedInorganicNutrients
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseNitrateUptake/ Nitrate (15N) Uptake from samples collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 2012-2014 Nitrate uptake by the bulk phytoplankton community was determined using tracer (<10%) additions of labeled 15-NO3. Samples were collected by Go-Flo from 5 depths 0, 5, 10, 20, 65 m and incubated for 24 h at light levels of 100%, 50%, 25%, 10%, and 0% surface irradiance, respectively.\n\ncdm_data_type = Other\nVARIABLES:\ndepth (m)\nincubation_light_level (percent)\nnitrate (Mole Concentration Of Nitrate In Sea Water, micromoles L-1)\nnitrate_uptake (Mole Concentration Of Nitrate In Sea Water, micromoles L-1 day-1)\nstation\ncast_number\nevent\nbottle_number\n https://pallter-data.marine.rutgers.edu/erddap/info/CruiseNitrateUptake/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseNitrateUptake.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseNitrateUptake&showErrors=false&email= National Science Foundation CruiseNitrateUptake
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationNitrateUptake/ Nitrate (15N) Uptake near Palmer Station, 2012-2013 Nitrate uptake by the bulk phytoplankton community was determined using tracer (<10%) additions of labeled 15-NO3.  Samples were collected by Go-Flo from 5 depths 0, 5, 10, 20, 65 m and incubated for 24 h at light levels of 100%, 50%, 25%, 10%, and 0% surface irradiance, respectively.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ndate (seconds since 1970-01-01T00:00:00Z)\nincubation_start_time (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nincubation_light_level\nnitrate (Mole Concentration Of Nitrate In Sea Water, micromoles L-1)\nnitrate_uptake (Mole Concentration Of Nitrate In Sea Water, micromoles L-1 day-1)\n https://pallter-data.marine.rutgers.edu/erddap/info/StationNitrateUptake/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationNitrateUptake.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationNitrateUptake&showErrors=false&email= National Science Foundation StationNitrateUptake

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact