![]() |
ERDDAP
Easier access to scientific data |
Brought to you by NOAA NMFS SWFSC ERD |
griddap | Subset | tabledap | Make A Graph | wms | files | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseChlorophyll/ | Chlorophyll and phaeopigments from water column samples, collected at selected depths aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991 - 2019. | Phytoplankton chlorophyll sampling was led by Smith from 1991-2002, and then by Vernet from 2003-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Chlorophyll a (Chl a) is the principal photosynthetic pigment of phytoplankton, and is used as a proxy measurement for estimating phytoplankton biomass in water samples. Chl a concentrations reflect the distribution of active phytoplankton spatially and with depth in the water column and their changes over time. Phaeopigments are non-photosynthetic pigments that are degradation products of phytoplankton chlorophylls which form during and after phytoplankton blooms. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80°C until analysis at Palmer Station following the completion of the cruise. Fluorometric chlorophyll and phaeopigment analysis is conducted at Palmer Station through acetone extraction of the GF/F filters and measurement of the extract on a Turner 10AU Fluorometer. The primary source of error for phaeopigment measurement is Chlorophyll b. If high amounts of Chlorophyll b are present in the sample, phaeopigments may be overestimated.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nchlorophyll_a (mass_concentration_of_chlorophyll_a_in_sea_water, mg m-3)\nphaeopigment (mg m-3)\nevent\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\ngrid_line\ngrid_station\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\n... (7 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseChlorophyll_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseChlorophyll_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseChlorophyll/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseChlorophyll.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseChlorophyll&showErrors=false&email= | National Science Foundation | CruiseChlorophyll | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicNutrients/ | Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991, 2019. | Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991 - 2019. The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every Conductivity, Temperature, Depth (CTD)/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (17 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicNutrients_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicNutrients_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicNutrients/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicNutrients.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicNutrients&showErrors=false&email= | National Science Foundation | CruiseDissolvedInorganicNutrients | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen | https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.graph | https://pallter-data.marine.rutgers.edu/erddap/files/ParticulateOrganicCarbonandNitrogen/ | Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991, 2018. Cruise PD94-01 not included in time series for lack of samples | Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991 - 2018. Cruise PD94-01 not included in time series for lack of samples. All organisms are composed of organic matter. Organic matter is synthesized from dissolved inorganic carbon (dissolved CO2) and inorganic nutrients by phytoplankton photosynthesis, and consumed (oxidized) by respiration by heterotrophs (zooplankton and bacteria). The organic matter in seawater is a variable mixture of dissolved and particulate organic matter (DOM and Princeton Ocean Model (POM)). Typically DOM predominates over POM by an order of magnitude, but the relative amount of POM can be highly enhanced during large phytoplankton blooms. The principal elemental components of POM include organic carbon (POC), organic nitrogen (PN), there is no particulate inorganic N) and phosphorus (POP). These elements exist in a relatively stable, characteristic ratio of 106:6:1 (C:N:P) in seawater, known as the Redfield Ratio. Marine particulate matter is a complex mixture of live and dead plankton and detritus, and of carbohydrates, proteins, lipids and nucleic acids. POC and PN are enhanced in the euphoric zone, reflecting their origin by photosynthesis. The particulate pool is also a complex assemblage of particles of different sizes, shapes and densities. A simplified scheme divides the particles into large, rapidly sinking particles (10s - 100s of meters per day) and smaller, suspended particles. The transition between small particles and dissolved organic matter is typically specified by filtration through GF/F filters. POC and PN are analyzed for samples in the upper 100 meters on all regular grid samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\nstation (u2)\ncast_number\nbottle\n... (5 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/ParticulateOrganicCarbonandNitrogen_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/ParticulateOrganicCarbonandNitrogen_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/ParticulateOrganicCarbonandNitrogen/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/ParticulateOrganicCarbonandNitrogen.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=ParticulateOrganicCarbonandNitrogen&showErrors=false&email= | National Science Foundation | ParticulateOrganicCarbonandNitrogen | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments | https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments.graph | https://pallter-data.marine.rutgers.edu/erddap/files/StationHighPerformanceLiquidChromotographyPigments/ | Photosynthetic pigments of water column samples analyzed using High Performance Liquid Chromatography (HPLC), sampled during the Palmer LTER field seasons at Palmer Station, Antarctica, 1991 - 2015. | Phytoplankton pigment sampling was led by Prezelin from the 1991-1992 season through the 1993-1994 season, and then by Vernet from the 1994-1995 season through the 2006-2007 season. Schofield is the third, and current lead, beginning in the 2008-2009 season. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column at stations within the Palmer LTER region (primarily B and E, to 50m and 65m respectively). Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods. Data is unavailable for the Palmer 2009-2010 season due to instrumentation problems and for the Palmer 2011-2012 season due to a freezer failure which resulted in the loss of samples. \\n\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\njulian_day\nstation\nirradiance (percent)\nchlorophyllide_a (Concentration Of Chlorophyll In Sea Water, ug L-1)\nchlorophyll_c3 (Concentration Of Chlorophyll In Sea Water, ug L-1)\nchlorophyll_c2 (Concentration Of Chlorophyll In Sea Water, ug L-1)\n... (25 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationHighPerformanceLiquidChromotographyPigments_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationHighPerformanceLiquidChromotographyPigments_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/StationHighPerformanceLiquidChromotographyPigments/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/StationHighPerformanceLiquidChromotographyPigments.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationHighPerformanceLiquidChromotographyPigments&showErrors=false&email= | National Science Foundation | StationHighPerformanceLiquidChromotographyPigments | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseHighPerformanceLiquidChromatographyPigments/ | Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991, 2016. | Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991 - 2016. Phytoplankton pigment sampling was led by Prezelin from 1991-1994, and then by Vernet from 1995-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods and the HPLC. Data is unavailable for the LMG10-01 cruise due to instrumentation problems and for the LMG12-01 cruise due to a freezer failure which resulted in the loss of samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ncast_number\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\n... (29 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseHighPerformanceLiquidChromatographyPigments_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseHighPerformanceLiquidChromatographyPigments_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseHighPerformanceLiquidChromatographyPigments/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseHighPerformanceLiquidChromatographyPigments.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseHighPerformanceLiquidChromatographyPigments&showErrors=false&email= | National Science Foundation | CruiseHighPerformanceLiquidChromatographyPigments |