NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingWinter.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingWinter https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingWinter.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusLogMovingWinter/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, 1999 and 2001. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the pelagic abundance and distribution of Adelie Penguins, 2) examining how the physical and biological characteristics of the marine environment influence these parameters and, 3) using these data to identify foraging areas that may be important to Adelie populations being studied as part of land-based  work at Palmer Station.  Secondary objectives included documenting the abundance and distribution of other seabirds and marine mammals within the LTER study area.  The focus of the January cruise was the nearshore foraging habitat,which required sampling at smaller scales.  All seabird censuses were thus conducted within approximately 100 kms of Palmer Station while traversing a sampling grid with stations at 10km intervals.  The first two days (18-20 January) of this cruise were spent covering the selected grid as rapidly as possible resulting in 45 transects spaced at 45-60 minute intervals.  There were no stops at the 10km stations during this Fast Grid phase.  Upon completion of the Fast Grid, a force 12 gale suspended data collection for 24 hours.  From January 22-25 the grid direction was reversed and the grid repeated.  During this Slow Grid phase, 2-M net tows were done at 10km intervals and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censusesduring the cruise were done using the procedures outlined in theprevious paragraph.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nlat_end (Latitude, degrees_north)\nlon_end (Longitude, degrees_east)\ndepth (m)\ncruise_name\nstart_station\nend_station\nduration (minutes)\n... (14 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/BirdCensusLogMovingWinter_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/BirdCensusLogMovingWinter_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusLogMovingWinter/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusLogMovingWinter.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusLogMovingWinter&showErrors=false&email= National Science Foundation BirdCensusLogMovingWinter
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingSummer.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingSummer https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusLogMovingSummer.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusLogMovingSummer/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, present. At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993 - present. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the pelagic abundance and distribution of Adelie Penguins, 2) examining how the physical and biological characteristics of the marine environment influence these parameters and, 3) using these data to identify foraging areas that may be important to Adelie populations being studied as part of land-based  work at Palmer Station.  Secondary objectives included documenting the abundance and distribution of other seabirds and marine mammals within the LTER study area.  The focus of the January cruise was the nearshore foraging habitat,which required sampling at smaller scales.  All seabird censuses were thus conducted within approximately 100 kms of Palmer Station while traversing a sampling grid with stations at 10km intervals.  The first two days (18-20 January) of this cruise were spent covering the selected grid as rapidly as possible resulting in 45 transects spaced at 45-60 minute intervals.  There were no stops at the 10km stations during this Fast Grid phase.  Upon completion of the Fast Grid, a force 12 gale suspended data collection for 24 hours.  From January 22-25 the grid direction was reversed and the grid repeated.  During this Slow Grid phase, 2-M net tows were done at 10km intervals and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censusesduring the cruise were done using the procedures outlined in theprevious paragraph.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (Date/Time, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nlat_end (Latitude, degrees_north)\nlon_end (Longitude, degrees_east)\ndepth (m)\nevent\ncruise_id\nstart_station\n... (16 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/BirdCensusLogMovingSummer_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/BirdCensusLogMovingSummer_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusLogMovingSummer/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusLogMovingSummer.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusLogMovingSummer&showErrors=false&email= National Science Foundation BirdCensusLogMovingSummer
https://pallter-data.marine.rutgers.edu/erddap/tabledap/InshoreSedimentTrapFluxes.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/InshoreSedimentTrapFluxes https://pallter-data.marine.rutgers.edu/erddap/tabledap/InshoreSedimentTrapFluxes.graph https://pallter-data.marine.rutgers.edu/erddap/files/InshoreSedimentTrapFluxes/ Sediment trap in nearshore waters collected during Palmer LTER station season at Palmer Station Antarctica, 1992, 1995. Sediment trap in nearshore waters collected during Palmer LTER station season at Palmer Station Antarctica, 1992 - 1995. Particulate organic matter is exported from the upper ocean euphotic zone in the form of large sinking particles and as dissolved material. Particle fluxes to depth link the surface and mesopelagic realm and supply food to the benthos. Sedimentation flux is typically measured with sediment traps of various designs. Sedimentation at the PAL site of the West Antarctic Peninsula demonstrates extreme seasonality, with a well-defined pulse in the Austral summer following sea ice retreat.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\nexperiment_name\ntime (Start Date, seconds since 1970-01-01T00:00:00Z)\nend_date (seconds since 1970-01-01T00:00:00Z)\ntrap_id\ncup_number\nduration (days)\nbiomass (mg)\nvolume_filtered (mL)\ntotal_mass (mg)\nbiomass_flux (mg m-2 day-1)\nbiomass_flux_mean (mg m-2 day-1)\n https://pallter-data.marine.rutgers.edu/erddap/info/InshoreSedimentTrapFluxes/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/InshoreSedimentTrapFluxes.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=InshoreSedimentTrapFluxes&showErrors=false&email= National Science Foundation InshoreSedimentTrapFluxes
https://pallter-data.marine.rutgers.edu/erddap/tabledap/OffshoreSedimentTrapFluxes.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/OffshoreSedimentTrapFluxes https://pallter-data.marine.rutgers.edu/erddap/tabledap/OffshoreSedimentTrapFluxes.graph https://pallter-data.marine.rutgers.edu/erddap/files/OffshoreSedimentTrapFluxes/ Vertical fluxes of particulate carbon, nitrogen and phosphorus from a sediment trap deployed west of Palmer Station, Antarctica at a depth of 170 meters, 1992-present. Particulate organic matter is exported from the upper ocean euphotic zone in the form of large sinking particles and as dissolved material. Particle fluxes to depth link the surface and mesopelagic realm and supply food to the benthos. Sedimentation flux is typically measured with sediment traps of various designs. Palmer LTER has deployed a time-series trap near 64.5degrees S, 66.0degrees W since late 1992. The trap is moored in 300 m depth and collects sinking particles at 150 m. Deployments and analyses were performed by David Karl, University of Hawaii until 2002 when Hugh Ducklow took over the sediment trap operations.Sedimentation at the PAL site of the West Antarctic Peninsula demonstrates extreme seasonality, with a well-defined pulse in the Austral summer following sea ice retreat. Daily sedimentation rates during the summer flux event are among the highest recorded globally. During the Austral winter when the ocean is covered by sea ice and shrouded in darkness, fluxes are among the lowest observed anywhere. Sedimentation rates at PAL typically vary by 4 orders of magnitude. There is also order of magnitude variability in the total annual flux (area under the curve)..Particulate organic matter is exported from the upper ocean euphotic zone in the form of large sinking particles and as dissolved material. Particle fluxes to depth link the surface and mesopelagic realm and supply food to the benthos. Sedimentation flux is typically measured with sediment traps of various designs. Palmer LTER has deployed a time-series trap near 64.5degrees S, 66.0degrees W since late 1992. The trap is moored in 300 m depth and collects sinking particles at 150 m. Deployments and analyses were performed by David Karl, University of Hawaii until 2002 when Hugh Ducklow took over the sediment trap operations.Sedimentation at the PAL site of the West Antarctic Peninsula demonstrates extreme seasonality, with a well-defined pulse in the Austral summer following sea ice retreat. Daily sedimentation rates during the summer flux event are among the highest recorded globally. During the Austral winter when the ocean is covered by sea ice and shrouded in darkness, fluxes are among the lowest observed anywhere. Sedimentation rates at PAL typically vary by 4 orders of magnitude. There is also order of magnitude variability in the total annual flux (area under the curve)..Particulate organic matter is exported from the upper ocean euphotic zone in the form of large sinking particles and as dissolved material. Particle fluxes to depth link the surface and mesopelagic realm and supply food to the benthos. Sedimentation flux is typically measured with sediment traps of various designs. Palmer LTER has deployed a time-series trap near 64.5degrees S, 66.0degrees W since late 1992. The trap is moored in 300 m depth and collects sinking particles at 150 m. Deployments and analyses were performed by David Karl, University of Hawaii until 2002 when Hugh Ducklow took over the sediment trap operations.Sedimentation at the PAL site of the West Antarctic Peninsula demonstrates extreme seasonality, with a well-defined pulse in the Austral summer following sea ice retreat. Daily sedimentation rates during the summer flux event are among the highest recorded globally. During the Austral winter when the ocean is covered by sea ice and shrouded in darkness, fluxes are among the lowest observed anywhere. Sedimentation rates at PAL typically vary by 4 orders of magnitude. There is also order of magnitude variability in the total annual flux (area under the curve).\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\n... (12 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/OffshoreSedimentTrapFluxes/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/OffshoreSedimentTrapFluxes.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=OffshoreSedimentTrapFluxes&showErrors=false&email= National Science Foundation OffshoreSedimentTrapFluxes

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact