NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData.graph https://pallter-data.marine.rutgers.edu/erddap/files/PalmerStationMicrobialData/ Bacterial abundance and produciton at the Palmer Station LTER sites B and E in May 2011 and 2012 The data described here were collected as part of a study of photoheterotrophic microbes in Antarctic waters (National Science Foundation (NSF) OPP 0838830).  This sampling was conducted in May outside of the LTER sampling season at Palmer Station.  Samplng was conducted by pumping water from a depth of 1 m into carboys that were returned to the lab..The data described here were collected as part of a study of photoheterotrophic microbes in Antarctic waters (NSF OPP 0838830).  This sampling was conducted in May outside of the LTER sampling season at Palmer Station.  Samplng was conducted by pumping water from a depth of 1 m into carboys that were returned to the lab.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\ntemperature (Sea Water Temperature, degree_C)\nchlorophyll_a (Mass Concentration Of Chlorophyll A In Sea Water, ug L-1)\nchlorophyll_a_standard_deviation (ug L-1)\nleucine_incorporation (picomoles L-1 hr-1)\nleucine_incorporation_stdev (picomoles L-1 hr-1)\nthymidine_incorporation (picomoles L-1 hr-1)\nthymidine_incorporation_stdev (picomoles L-1 hr-1)\nbacterial_abundance\nbacterial_abundance_stdev\n https://pallter-data.marine.rutgers.edu/erddap/info/PalmerStationMicrobialData/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/PalmerStationMicrobialData.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=PalmerStationMicrobialData&showErrors=false&email= National Science Foundation PalmerStationMicrobialData
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseCTDProfiles/ Conductivity Temperature Depth (CTD) sensor profile data binned by depth from PAL LTER annual cruises, 1991, 2017 (ongoing). Conductivity Temperature Depth (CTD) sensor profile data binned by depth from PAL LTER annual cruises, 1991 - 2017 (ongoing). Since 1991 (and ongoing), the PAL LTER program has deployed a SeaBird 911+ CTD mounted on a 24-bottle rosette during annual (Austral Summer) cruises plus a few supplemental cruises at other times of the year. An equal area grid oriented parallel to the average coast provides the basis for sampling, as well as specific process studies and on-the-fly scientific needs. The CTD-rosette is lowered into the ocean (usually to just above the sea-floor) using the ship's conductive-wire winch. Data is collected and displayed real-time to ensure quality and make decisions about where to collect seawater with the bottles. Bottle data is typically collected extensively in the seasaonal mixed layer and pycnocline, plus at Tmin, in the permament pycnolcine and at Tmax and Smax, as well as near the bottom. Bottle data allows measurement adn calculation of additional variables and helps ensure quality data collected via sensors. Sensors include: Pressure, Conductivity (for Salinity), Temperature, Oxygen, Transmissometer, Flourometer, Photosynthetically Available Radiation (PAR/Irrandiance). Additional Bottle Data Variables include: Phosphate, Silicate, Nitrite, Nitrate, Ammonium.  After each cruise, Temperature, Conductivity and Oxygen sensors are calibrated and post-crusie processing is applied, making use of pre- and post- cruise calibrations as well as SeaBird software and algorithms for getting the best quality data. Each profile is then inspected for any issues and if needed, suitable corrections are made such as using secondary sensors (temperature, conductivity and oxygen all currently measured in duplicate), using the upcast, or flagging the data as bad.\n\ncdm_data_type = TrajectoryProfile\nVARIABLES:\nstudy_name (Cruise Name)\ntime (Datetime UTC, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\npressure (dbar)\ntemperature (degree_C)\nsalinity (1)\nsigmat (Sigma-Theta, kg m-3)\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseCTDProfiles_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseCTDProfiles_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseCTDProfiles/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseCTDProfiles.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseCTDProfiles&showErrors=false&email= National Science Foundation CruiseCTDProfiles
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseInherentOpticalProperties/ Inherent optical properties measured at selected water-column depths, collected aboard Palmer LTER Annual cruises off the coast of the Western Antarctic Penninsula, 2009. The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes.  A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels.  In addition to the long-term field and research activities, information management, graduate student training,  education and outreach are an integral part of the program.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\ngrid_line\ngrid_station\nstation\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\ntemperature (Sea Water Temperature, degree_C)\nconductivity (Sea Water Electrical Conductivity, mS cm-1)\n... (24 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseInherentOpticalProperties_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseInherentOpticalProperties_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseInherentOpticalProperties/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseInherentOpticalProperties.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseInherentOpticalProperties&showErrors=false&email= National Science Foundation CruiseInherentOpticalProperties
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationInherentOpticalProperties/ Inherent optical properties measured at selected water-column depths, collected at Palmer Station Antarctica, 2008/2009 field season. The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes.  A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels.  In addition to the long-term field and research activities, information management, graduate student training,  education and outreach are an integral part of the program.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nsalinity (1)\ntemperature (degree_C)\nconductivity (ms cm-1)\na412 (m-1)\na440 (m-1)\n... (22 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationInherentOpticalProperties_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationInherentOpticalProperties_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/StationInherentOpticalProperties/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationInherentOpticalProperties.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationInherentOpticalProperties&showErrors=false&email= National Science Foundation StationInherentOpticalProperties
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/ Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991, 1993. Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991 - 1993. Photosynthesis-irradiance measurements are used to derive P-I relationships and to calculate primary production for each discrete sample. Blue-green photosynthetron method described by Prezelin et al. (1994) were used to determine photosynthesis irradiance (P-I) relationships for collected samples. Non-linear cureve fits for the P-I data were calculated using the simplex method of Caceci & Cacheris (1984). Curve fitting provided estimates of Pmax (the light saturated rate of photosynthesis) and alpha (the affinity for photosynthesis at light-limited irradiances.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent (Event Number)\njulian_day\nincubation_start_time (seconds since 1970-01-01T00:00:00Z)\ngrid_station\nstation\ngrid_line\nbottle (Bottle Number)\ndepth (m)\nchlorophyll_a (mg m-3)\nincubation_hours (Incubation Hrs, hours)\nin_situ_temperature (In Situ Water Temperature, degree_C)\nincubation_temperature (Incubation Water Temperature, degree_C)\npmax (mg m-3 hour-1)\nalpha\nbeta (percent)\n... (8 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves&showErrors=false&email= National Science Foundation CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves
https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesCruise.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesCruise https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesCruise.graph https://pallter-data.marine.rutgers.edu/erddap/files/dO18StableIsotopesCruise/ Sources of oceanic freshwater content along the western Antarctic Peninsula (PAL-LTER Study Region) determined by the stable isotope composition (d18O) of seawater. The oceanic distribution of d18O is determined largely by the same processes that control salinity. Surface d18O reflects the magnitude and spatial distribution of freshwater inputs, and it is a conservative tracer in the ocean interior. The great benefit of d18O is obtained from the circumstances under which it exhibits behavior different to that of salinity. One such circumstance derives from the salinity and d18O values in precipitation, with salinity being constant with latitude (typically zero), while in general d18O in precipitation becomes progressively isotopically lighter toward the poles. This results in glacial ice (which derives from high-latitude precipitation) being very isotopically light, enabling d18O to be a useful tracer of glacial discharge to the ocean (e.g., Schlosser et al. 1990; Weiss et al. 1979). Another difference occurs in regions influenced by sea ice, which greatly affects salinity during its formation/melt cycle but has only minimal impact on d18O. This decoupling of the two tracers allows them to be used in tandem to quantitatively separate freshwater inputs from sea ice melt and those from meteoric sources (precipitation plus glacial discharge). For this, a simple three-endmember mass balance can be used. For details please see Meredith, M. P., H. J. Venables, A. Clarke, H. W. Ducklow, M. Erickson, M. J. Leng, J. T. M. Lenaerts, and M. R. van den Broeke. 2013. The freshwater system west of the Antarctic Peninsula: Spatial and temporal changes. Journal of Climate 26:1669-1684.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ngrid_station\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\ncast_number\nbottle\ndepth (m)\npressure (sea_water_pressure, dbar)\no18_sample_number\n... (14 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/dO18StableIsotopesCruise_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/dO18StableIsotopesCruise_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/dO18StableIsotopesCruise/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/dO18StableIsotopesCruise.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=dO18StableIsotopesCruise&showErrors=false&email= National Science Foundation dO18StableIsotopesCruise
https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.graph https://pallter-data.marine.rutgers.edu/erddap/files/dO18StableIsotopesPalmerBasin/ Sources of oceanic freshwater content in the Palmer Basin along the western Antarctic Peninsula (PAL-LTER Study Region) determined by the stable isotope composition (d18O) of seawater. Dataset contains measurements of the ratio of stable isotopes of oxygen in seawater taken in the Palmer Basin at stations B, E and the Palmer station seawater intake. The oceanic distribution of d18O is determined largely by the same processes that control salinity. Surface d18O reflects the magnitude and spatial distribution of freshwater inputs, and it is a conservative tracer in the ocean interior. The great benefit of d18O is obtained from the circumstances under which it exhibits behavior different to that of salinity. One such circumstance derives from the salinity and d18O values in precipitation, with salinity being constant with latitude (typically zero), while in general d18O in precipitation becomes progressively isotopically lighter toward the poles. This results in glacial ice (which derives from high-latitude precipitation) being very isotopically light, enabling d18O to be a useful tracer of glacial discharge to the ocean (e.g., Schlosser et al. 1990; Weiss et al. 1979). Another difference occurs in regions influenced by sea ice, which greatly affects salinity during its formation/melt cycle but has only minimal impact on d18O. This decoupling of the two tracers allows them to be used in tandem to quantitatively separate freshwater inputs from sea ice melt and those from meteoric sources (precipitation plus glacial discharge). For this, a simple three-endmember mass balance can be used. For details please see Meredith, M. P., H. J. Venables, A. Clarke, H. W. Ducklow, M. Erickson, M. J. Leng, J. T. M. Lenaerts, and M. R. van den Broeke. 2013. The freshwater system west of the Antarctic Peninsula: Spatial and temporal changes. Journal of Climate 26:1669-1684.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstation (Sampling Station)\ntime (Sample Date, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ntemperature (degree_C)\nsalinity (Practical Salinity, 1)\nmld (Mixed Layer Depth, m)\no18 (Oxygen Isotopes Ratio, ppt)\no18_duplicate (Oxygen Isotopes Ratio, ppt)\nevent (Event Number)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/dO18StableIsotopesPalmerBasin_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/dO18StableIsotopesPalmerBasin_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/dO18StableIsotopesPalmerBasin/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/dO18StableIsotopesPalmerBasin.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=dO18StableIsotopesPalmerBasin&showErrors=false&email= National Science Foundation dO18StableIsotopesPalmerBasin

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact