NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AmmoniaOxidizingBacteriaAndArchaeaAbundance.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AmmoniaOxidizingBacteriaAndArchaeaAbundance https://pallter-data.marine.rutgers.edu/erddap/tabledap/AmmoniaOxidizingBacteriaAndArchaeaAbundance.graph https://pallter-data.marine.rutgers.edu/erddap/files/AmmoniaOxidizingBacteriaAndArchaeaAbundance/ Abundance of ammonia oxidizing bacteria and archaea that were collected on LMG 06-01 (archaea) at discrete depths, 2006. The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes.  A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels.  In addition to the long-term field and research activities, information management, graduate student training,  education and outreach are an integral part of the program.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\nstation\nbottle\neub_16s_gene_copies (L-1)\naob_165_gene_copies (L-1)\narchaea_16s_gene_copies (L-1)\ncren_16s_gene_copies (L-1)\n... (10 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/AmmoniaOxidizingBacteriaAndArchaeaAbundance_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/AmmoniaOxidizingBacteriaAndArchaeaAbundance_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/AmmoniaOxidizingBacteriaAndArchaeaAbundance/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AmmoniaOxidizingBacteriaAndArchaeaAbundance.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AmmoniaOxidizingBacteriaAndArchaeaAbundance&showErrors=false&email= National Science Foundation AmmoniaOxidizingBacteriaAndArchaeaAbundance
https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter https://pallter-data.marine.rutgers.edu/erddap/tabledap/BirdCensusStationaryWinter.graph https://pallter-data.marine.rutgers.edu/erddap/files/BirdCensusStationaryWinter/ At-sea seabird censuses. Data on the species encountered (including marine mammals), their abundance, distribution and behavior. Data collected aboard cruises off the coast of the Western Antarctic Penninsula, 1993, 1999 and 2001. The objectives of the LTER seabird component during the 92-93 season cruises were similar.  These objectives included 1) determining the pelagic abundance and distribution of Adelie Penguins, 2) examining how the physical and biological characteristics of the marine environment influence these parameters and, 3) using these data to identify foraging areas that may be important to Adelie populations being studied as part of land-based  work at Palmer Station.  Secondary objectives included documenting the abundance and distribution of other seabirds and marine mammals within the LTER study area.  The focus of the January cruise was the nearshore foraging habitat,which required sampling at smaller scales.  All seabird censuses were thus conducted within approximately 100 kms of Palmer Station while traversing a sampling grid with stations at 10km intervals.  The first two days (18-20 January) of this cruise were spent covering the selected grid as rapidly as possible resulting in 45 transects spaced at 45-60 minute intervals.  There were no stops at the 10km stations during this Fast Grid phase.  Upon completion of the Fast Grid, a force 12 gale suspended data collection for 24 hours.  From January 22-25 the grid direction was reversed and the grid repeated.  During this Slow Grid phase, 2-M net tows were done at 10km intervals and BOPS and 1-M and 2-M net tows every 20 km.  All seabird censusesduring the cruise were done using the procedures outlined in theprevious paragraph.\n\ncdm_data_type = Trajectory\nVARIABLES:\nevent\ncruise_id\nstudy_name (Study)\ndepth (m)\nlatitude (degrees_north)\nlongitude (degrees_east)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ngrid_line (km)\ngrid_station (km)\nsea_state\nsalinity (Sea Water Practical Salinity, 1)\n... (14 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/BirdCensusStationaryWinter_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/BirdCensusStationaryWinter_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/BirdCensusStationaryWinter/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/BirdCensusStationaryWinter.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=BirdCensusStationaryWinter&showErrors=false&email= National Science Foundation BirdCensusStationaryWinter
https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData https://pallter-data.marine.rutgers.edu/erddap/tabledap/PalmerStationMicrobialData.graph https://pallter-data.marine.rutgers.edu/erddap/files/PalmerStationMicrobialData/ Bacterial abundance and produciton at the Palmer Station LTER sites B and E in May 2011 and 2012 The data described here were collected as part of a study of photoheterotrophic microbes in Antarctic waters (National Science Foundation (NSF) OPP 0838830).  This sampling was conducted in May outside of the LTER sampling season at Palmer Station.  Samplng was conducted by pumping water from a depth of 1 m into carboys that were returned to the lab..The data described here were collected as part of a study of photoheterotrophic microbes in Antarctic waters (NSF OPP 0838830).  This sampling was conducted in May outside of the LTER sampling season at Palmer Station.  Samplng was conducted by pumping water from a depth of 1 m into carboys that were returned to the lab.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\ntemperature (Sea Water Temperature, degree_C)\nchlorophyll_a (Mass Concentration Of Chlorophyll A In Sea Water, ug L-1)\nchlorophyll_a_standard_deviation (ug L-1)\nleucine_incorporation (picomoles L-1 hr-1)\nleucine_incorporation_stdev (picomoles L-1 hr-1)\nthymidine_incorporation (picomoles L-1 hr-1)\nthymidine_incorporation_stdev (picomoles L-1 hr-1)\nbacterial_abundance\nbacterial_abundance_stdev\n https://pallter-data.marine.rutgers.edu/erddap/info/PalmerStationMicrobialData/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/PalmerStationMicrobialData.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=PalmerStationMicrobialData&showErrors=false&email= National Science Foundation PalmerStationMicrobialData
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicCarbon/ Dissolved inorganic carbon and alkalinity of discrete water column samples, collected aboard Palmer LTER annual cruises of the Western Antarctic Peninsula, 1993, 2018. Dissolved inorganic carbon and alkalinity of discrete water column samples, collected aboard Palmer LTER annual cruises of the Western Antarctic Peninsula, 1993 - 2018. There is a temporal uncoupling between Antarctic phytoplankton and bacterial processes.  This affects the coastal ecosystem carbon cycle. Our sampling strategy and experiments are designed to evaluate the hypotheses that this uncoupling is caused by:1) dissolved organic carbon - bacterial interactions,2) temperature effects, and 3) direct competition and chemical antagonism.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent (Event Number)\nbottle (Bottle Number)\ngrid_station\ncast_number (Cast)\ngrid_line (Line)\nstation\ntime (Datetime GMT, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ndissolved_inorganic_carbon1 (DIC 1, micromoles kg-1)\ndissolved_inorganic_carbon2 (DIC 2, micromoles kg-1)\nalkalinity1 (Alkalinity 1)\nalkalinity2 (Alkalinity 2)\ntemperature (degree_C)\nsalinity (1)\nnotes\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicCarbon_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicCarbon_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicCarbon/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicCarbon.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicCarbon&showErrors=false&email= National Science Foundation CruiseDissolvedInorganicCarbon
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicNutrients/ Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991, 2019. Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991 - 2019. The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every Conductivity, Temperature, Depth (CTD)/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (17 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicNutrients_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicNutrients_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicNutrients/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicNutrients.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicNutrients&showErrors=false&email= National Science Foundation CruiseDissolvedInorganicNutrients
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseInherentOpticalProperties.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseInherentOpticalProperties/ Inherent optical properties measured at selected water-column depths, collected aboard Palmer LTER Annual cruises off the coast of the Western Antarctic Penninsula, 2009. The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes.  A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels.  In addition to the long-term field and research activities, information management, graduate student training,  education and outreach are an integral part of the program.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\ngrid_line\ngrid_station\nstation\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\ntemperature (Sea Water Temperature, degree_C)\nconductivity (Sea Water Electrical Conductivity, mS cm-1)\n... (24 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseInherentOpticalProperties_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseInherentOpticalProperties_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseInherentOpticalProperties/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseInherentOpticalProperties.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseInherentOpticalProperties&showErrors=false&email= National Science Foundation CruiseInherentOpticalProperties
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationInherentOpticalProperties.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationInherentOpticalProperties/ Inherent optical properties measured at selected water-column depths, collected at Palmer Station Antarctica, 2008/2009 field season. The Palmer, Antarctica, Long-Term Ecological Research project is a member site of the Long-Term Ecological Research program, a network of sites investigating diverse biomes.  A team of researchers seeks to understand the structure and function of the Western Antarctic Peninsula's marine and terrestrial ecosystems in the context of seasonal-to-interannual atmospheric and sea ice dynamics, as well as long-term climate change. The PAL measurement system (or grid) is designed to study marine and terrestrial food webs consisting principally of diatom primary producers, the dominant herbivore Antarctic krill, and the apex predator Adelie penguin. An attenuated microbial food web is also a focus. PAL studies these ecosystems annually over a regional scale grid of oceanographic stations and seasonally at Palmer Station. \\n\\nPalmer Station is located on Anvers Island west of the Antarctic Peninula. The peninsula runs perpendicular to a strong climatic gradient between the cold, dry continental regime to the south, characteristic of the Antarctic interior, and the warm, moist, maritime regime to the north. North-south shifts in the gradient give rise to large environmental variability to climate change. Sea ice extent and variability affects ecosystem changes at all trophic levels.  In addition to the long-term field and research activities, information management, graduate student training,  education and outreach are an integral part of the program.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nsalinity (1)\ntemperature (degree_C)\nconductivity (ms cm-1)\na412 (m-1)\na440 (m-1)\n... (22 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationInherentOpticalProperties_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationInherentOpticalProperties_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/StationInherentOpticalProperties/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationInherentOpticalProperties.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationInherentOpticalProperties&showErrors=false&email= National Science Foundation StationInherentOpticalProperties
https://pallter-data.marine.rutgers.edu/erddap/tabledap/IsotopicNicheWAPFoodWebComponents.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/IsotopicNicheWAPFoodWebComponents https://pallter-data.marine.rutgers.edu/erddap/tabledap/IsotopicNicheWAPFoodWebComponents.graph https://pallter-data.marine.rutgers.edu/erddap/files/IsotopicNicheWAPFoodWebComponents/ Isotopic signatures of penguin food-web components along the western Antarctic Peninsula, 2009-2011 We evaluated regional variation in reproductive isotopic niche among breeding populations of Adélie (Pygoscelis adeliae), chinstrap (P. antarctica), and gentoo (P. papua) penguins west of the Antarctic Peninsula (AP) to test a hypothesis for sea ice-associated food-web correlates of breeding population change. We rely on signatures of naturally occurring carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) stable isotopes (SI) as integrated proxies of penguin trophic foraging and food-web structure. Each season, study nests, where pairs of adults were present, were individually marked and chosen before the onset of egg-laying, and consistently monitored. When study nests were found at the one-egg stage, both adults were captured to obtain blood samples used for molecular sexing and stable isotope analyses, and measurements of structural size and body mass. At the time of capture, each adult penguin was quickly blood sampled (~1 ml) from the brachial vein. After handling, individuals at study nests were further monitored to ensure the pair reached clutch completion, i.e., two eggs. At approximate an average nest age of five and 15 days, offspring from study nests were captured and quickly blood sampled (<= ~500 µl for day five chicks, and <= ~1 ml for day 15 chicks) from the tarsus vein using a sterile needle and heparinized capillary tubes for day five chicks, and a sterile 3 ml syringe and heparinized infusion needle for day 15 chicks, again to obtain blood tissue for SI analyses. Study nests were monitored for chick survival to 25 days. At five weeks into chick-rearing, older crèched chicks of all three species were captured and quickly blood sampled from study rookeries near Anvers Island. Handling of crèched chicks occurred over a one or two day period, which varied seasonally and by species depending on nest initiation dates. Adélie penguin chicks at Avian Island were sampled on the same day Anvers Island Adélie penguin chicks were sampled. Adélie penguin chicks at Charcot Island, sampled during one season only on 25 January 2010, were handled three days after Anvers Island and Avian Island Adélie penguin chicks were sampled that year, i.e., 22 January 2010. Blood samples from crèched chicks (~1 ml) were taken from the brachial vein using a sterile 3 ml syringe and heparinized infusion needle following sampling procedures used for adult penguins to obtain blood tissue for SI analyses. Stable isotope analyses were conducted at the Stable Isotope Facility at the University of California, Davis using an elemental analyzer interfaced with an isotope ratio mass spectrometer\n\ncdm_data_type = Other\nVARIABLES:\ntime (seconds since 1970-01-01T00:00:00Z)\n... (16 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/IsotopicNicheWAPFoodWebComponents/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/IsotopicNicheWAPFoodWebComponents.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=IsotopicNicheWAPFoodWebComponents&showErrors=false&email= National Science Foundation IsotopicNicheWAPFoodWebComponents
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseNitrateUptake/ Nitrate (15N) Uptake from samples collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 2012-2014 Nitrate uptake by the bulk phytoplankton community was determined using tracer (<10%) additions of labeled 15-NO3. Samples were collected by Go-Flo from 5 depths 0, 5, 10, 20, 65 m and incubated for 24 h at light levels of 100%, 50%, 25%, 10%, and 0% surface irradiance, respectively.\n\ncdm_data_type = Other\nVARIABLES:\ndepth (m)\nincubation_light_level (percent)\nnitrate (Mole Concentration Of Nitrate In Sea Water, micromoles L-1)\nnitrate_uptake (Mole Concentration Of Nitrate In Sea Water, micromoles L-1 day-1)\nstation\ncast_number\nevent\nbottle_number\n https://pallter-data.marine.rutgers.edu/erddap/info/CruiseNitrateUptake/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseNitrateUptake.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseNitrateUptake&showErrors=false&email= National Science Foundation CruiseNitrateUptake
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationNitrateUptake.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationNitrateUptake/ Nitrate (15N) Uptake near Palmer Station, 2012-2013 Nitrate uptake by the bulk phytoplankton community was determined using tracer (<10%) additions of labeled 15-NO3.  Samples were collected by Go-Flo from 5 depths 0, 5, 10, 20, 65 m and incubated for 24 h at light levels of 100%, 50%, 25%, 10%, and 0% surface irradiance, respectively.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ndate (seconds since 1970-01-01T00:00:00Z)\nincubation_start_time (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nincubation_light_level\nnitrate (Mole Concentration Of Nitrate In Sea Water, micromoles L-1)\nnitrate_uptake (Mole Concentration Of Nitrate In Sea Water, micromoles L-1 day-1)\n https://pallter-data.marine.rutgers.edu/erddap/info/StationNitrateUptake/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationNitrateUptake.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationNitrateUptake&showErrors=false&email= National Science Foundation StationNitrateUptake
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseEventLog/ Palmer (PAL) log of events aboard Palmer LTER cruises off the coast of the Western Antarctic Peninsula (cruise happenings ordered by time) is a meta dataset, including lat-lon, datetime, activity, events, etc, 1991, 2019. Palmer (PAL) log of events aboard Palmer LTER cruises off the coast of the Western Antarctic Peninsula (cruise happenings ordered by time) is a meta dataset, including lat-lon, datetime, activity, events, etc, 1991 - 2019. The event log for the Palmer LTER research cruises provides a mapping of sampling and other research activities to spatial, temporal and other variables. Event numbers are used to coordinate relational indexes and provide users of the data with a high-level index for relating measurements across research components.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\nevent_group\ncast_number\nevent_name\ngrid_station\nstation\ngrid_line\ncalculated_grid_station\ncomments\nnotes\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseEventLog_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseEventLog_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseEventLog/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseEventLog.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseEventLog&showErrors=false&email= National Science Foundation CruiseEventLog
https://pallter-data.marine.rutgers.edu/erddap/tabledap/SamplingStations.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/SamplingStations https://pallter-data.marine.rutgers.edu/erddap/tabledap/SamplingStations.graph https://pallter-data.marine.rutgers.edu/erddap/files/SamplingStations/ Palmer LTER Station Grid Sampling lines and stations for the Palmer LTER field site\n\ncdm_data_type = Other\nVARIABLES:\nindex\nline (Sampling Line)\nlatitude (Station Latitude, degrees_north)\nlongitude (Station Longitude, degrees_east)\ngrid_code\nstation_name\nstation\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/SamplingStations_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/SamplingStations_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/SamplingStations/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/SamplingStations.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=SamplingStations&showErrors=false&email= National Science Foundation SamplingStations
https://pallter-data.marine.rutgers.edu/erddap/tabledap/VertexStyleSedimentTrapData.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/VertexStyleSedimentTrapData https://pallter-data.marine.rutgers.edu/erddap/tabledap/VertexStyleSedimentTrapData.graph https://pallter-data.marine.rutgers.edu/erddap/files/VertexStyleSedimentTrapData/ Palmer Station VERTEX-style Sediment Trap measurements, 50 m depth, 2012-2013 Measurements were made using moored VERTEX-style particle interceptor tube (PIT) sediment traps deployed at a depth of 50-m at stations B and E near Palmer Station between Nov. 2012 and Apr. 2013.  Sediment trap contents was measured to determine fluxes of POC, PN, and Th-234 on two size fractions (>200 and <200 micron).  Note that these are operational size classes and may not directly coincide with the size of aggregates that may have been sinking in the water column.  For more details, please see Stukel et al. (in review, Global Biogeochemical Cycles)..Measurements were made using moored VERTEX-style particle interceptor tube (PIT) sediment traps deployed at a depth of 50-m at stations B and E near Palmer Station between Nov. 2012 and Apr. 2013.  Sediment trap contents was measured to determine fluxes of POC, PN, and Th-234 on two size fractions (>200 and <200 micron).  Note that these are operational size classes and may not directly coincide with the size of aggregates that may have been sinking in the water column.  For more details, please see Stukel et al. (in review, Global Biogeochemical Cycles).\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\nstation\ntime (Deployment Date, seconds since 1970-01-01T00:00:00Z)\nrecovery_date (seconds since 1970-01-01T00:00:00Z)\npoc_flux (mg m-2 day-1)\ncarbon_flux_std (mg m-2 day-1)\nparticulate_nitrogen_flux (mg m-2 day-1)\nparticulate_nitrogen_flux_std (mg m-2 day-1)\norganic_carbon_flux_less_than_200 (mg m-2 day-1)\norganic_carbon_flux_less_than_200_stdev (mg m-2 day-1)\norganic_carbon_flux_greater_than_200 (mg m-2 day-1)\norganic_carbon_flux_greater_than_200_stdev (mg m-2 day-1)\nnitrogen_flux_less_than_200 (mg m-2 day-1)\nnitrogen_flux_less_than_200_stdev (mg m-2 day-1)\nnitrogen_flux_greater_than_200 (mg m-2 day-1)\nnitrogen_flux_greater_than_200_stdev (mg m-2 day-1)\nth234_flux\nth234_flux_uncertainty_stdev\n https://pallter-data.marine.rutgers.edu/erddap/info/VertexStyleSedimentTrapData/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/VertexStyleSedimentTrapData.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=VertexStyleSedimentTrapData&showErrors=false&email= National Science Foundation VertexStyleSedimentTrapData
https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.graph https://pallter-data.marine.rutgers.edu/erddap/files/ParticulateOrganicCarbonandNitrogen/ Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991, 2018. Cruise PD94-01 not included in time series for lack of samples Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991 - 2018. Cruise PD94-01 not included in time series for lack of samples. All organisms are composed of organic matter. Organic matter is synthesized from dissolved inorganic carbon (dissolved CO2) and inorganic nutrients by phytoplankton photosynthesis, and consumed (oxidized) by respiration by heterotrophs (zooplankton and bacteria). The organic matter in seawater is a variable mixture of dissolved and particulate organic matter (DOM and Princeton Ocean Model (POM)). Typically DOM predominates over POM by an order of magnitude, but the relative amount of POM can be highly enhanced during large phytoplankton blooms. The principal elemental components of POM include organic carbon (POC), organic nitrogen (PN), there is no particulate inorganic N) and phosphorus (POP). These elements exist in a relatively stable, characteristic ratio of 106:6:1 (C:N:P) in seawater, known as the Redfield Ratio. Marine particulate matter is a complex mixture of live and dead plankton and detritus, and of carbohydrates, proteins, lipids and nucleic acids. POC and PN are enhanced in the euphoric zone, reflecting their origin by photosynthesis. The particulate pool is also a complex assemblage of particles of different sizes, shapes and densities. A simplified scheme divides the particles into large, rapidly sinking particles (10s - 100s of meters per day) and smaller, suspended particles. The transition between small particles and dissolved organic matter is typically specified by filtration through GF/F filters. POC and PN are analyzed for samples in the upper 100 meters on all regular grid samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\nstation (u2)\ncast_number\nbottle\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/ParticulateOrganicCarbonandNitrogen_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/ParticulateOrganicCarbonandNitrogen_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/ParticulateOrganicCarbonandNitrogen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/ParticulateOrganicCarbonandNitrogen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=ParticulateOrganicCarbonandNitrogen&showErrors=false&email= National Science Foundation ParticulateOrganicCarbonandNitrogen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves/ Photosynthesis-irradiance measurements collected during Palmer LTER station seasons at Palmer Station Antarctica, 1991, 1993. Photosynthesis-irradiance measurements collected during Palmer LTER station seasons at Palmer Station Antarctica, 1991 - 1993. Photosynthesis-irradiance measurements are used to derive P-I relationships and to calculate primary production for each discrete sample. Blue-green photosynthetron method described by Prezelin et al. (1994) were used to determine photosynthesis irradiance (P-I) relationships for collected samples. Non-linear cureve fits for the P-I data were calculated using the simplex method of Caceci & Cacheris (1984). Curve fitting provided estimates of Pmax (the light saturated rate of photosynthesis) and alpha (the affinity for photosynthesis at light-limited irradiances.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nstation\njulian_day\nbottle\nchlorophyll_a (Mass Concentration Of Chlorophyll A In Sea Water, mg m-3)\nincubation_hours (hours)\nin_situ_temperature (degree_C)\nincubation_temperature (degree_C)\npmax (mg m-3 hour-1)\nalpha\nbeta\nIk (microeinstiens m-2 s-1)\nIt (microeinstiens m-2 s-1)\npmax_error (mg m-3 hour-1)\nalpha_error\n... (4 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves&showErrors=false&email= National Science Foundation StationPhotosyntheticParametersfromPhotosynthesisIrradianceCurves
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/ Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991, 1993. Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991 - 1993. Photosynthesis-irradiance measurements are used to derive P-I relationships and to calculate primary production for each discrete sample. Blue-green photosynthetron method described by Prezelin et al. (1994) were used to determine photosynthesis irradiance (P-I) relationships for collected samples. Non-linear cureve fits for the P-I data were calculated using the simplex method of Caceci & Cacheris (1984). Curve fitting provided estimates of Pmax (the light saturated rate of photosynthesis) and alpha (the affinity for photosynthesis at light-limited irradiances.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent (Event Number)\njulian_day\nincubation_start_time (seconds since 1970-01-01T00:00:00Z)\ngrid_station\nstation\ngrid_line\nbottle (Bottle Number)\ndepth (m)\nchlorophyll_a (mg m-3)\nincubation_hours (Incubation Hrs, hours)\nin_situ_temperature (In Situ Water Temperature, degree_C)\nincubation_temperature (Incubation Water Temperature, degree_C)\npmax (mg m-3 hour-1)\nalpha\nbeta (percent)\n... (8 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves&showErrors=false&email= National Science Foundation CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationHighPerformanceLiquidChromotographyPigments.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationHighPerformanceLiquidChromotographyPigments/ Photosynthetic pigments of water column samples analyzed using High Performance Liquid Chromatography (HPLC), sampled during the Palmer LTER field seasons at Palmer Station, Antarctica, 1991 - 2015. Phytoplankton pigment sampling was led by Prezelin from the 1991-1992 season through the 1993-1994 season, and then by Vernet from the 1994-1995 season through the 2006-2007 season. Schofield is the third, and current lead, beginning in the 2008-2009 season. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column at stations within the Palmer LTER region (primarily B and E, to 50m and 65m respectively). Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods. Data is unavailable for the Palmer 2009-2010 season due to instrumentation problems and for the Palmer 2011-2012 season due to a freezer failure which resulted in the loss of samples. \\n\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\njulian_day\nstation\nirradiance (percent)\nchlorophyllide_a (Concentration Of Chlorophyll In Sea Water, ug L-1)\nchlorophyll_c3 (Concentration Of Chlorophyll In Sea Water, ug L-1)\nchlorophyll_c2 (Concentration Of Chlorophyll In Sea Water, ug L-1)\n... (25 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationHighPerformanceLiquidChromotographyPigments_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationHighPerformanceLiquidChromotographyPigments_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/StationHighPerformanceLiquidChromotographyPigments/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationHighPerformanceLiquidChromotographyPigments.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationHighPerformanceLiquidChromotographyPigments&showErrors=false&email= National Science Foundation StationHighPerformanceLiquidChromotographyPigments
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseHighPerformanceLiquidChromatographyPigments/ Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991, 2016. Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991 - 2016. Phytoplankton pigment sampling was led by Prezelin from 1991-1994, and then by Vernet from 1995-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods and the HPLC. Data is unavailable for the LMG10-01 cruise due to instrumentation problems and for the LMG12-01 cruise due to a freezer failure which resulted in the loss of samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ncast_number\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\n... (29 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseHighPerformanceLiquidChromatographyPigments_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseHighPerformanceLiquidChromatographyPigments_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseHighPerformanceLiquidChromatographyPigments/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseHighPerformanceLiquidChromatographyPigments.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseHighPerformanceLiquidChromatographyPigments&showErrors=false&email= National Science Foundation CruiseHighPerformanceLiquidChromatographyPigments
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPrimaryProduction.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPrimaryProduction https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationPrimaryProduction.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationPrimaryProduction/ Water column primary production from inorganic carbon uptake for 24h at simulated in situ light levels in deck incubators, collected at Palmer Station Antarctica during Palmer LTER field seasons, 1994 - 2019.\\n Primary Production experiments were led by Vernet from the 1994-1995 season through the 2006-2007 season. Schofield is the current lead, beginning in the 2009-2010 season. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column at stations within the Palmer LTER region (primarily B and E, to 50m and 65m respectively). Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the Palmer Station sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period..Primary Production experiments were led by Vernet from the 1994-1995 season through the 2006-2007 season. Schofield is the current lead, beginning in the 2009-2010 season. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column at stations within the Palmer LTER region (primarily B and E, to 50m and 65m respectively). Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the Palmer Station sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\nevent\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nlatitude (degrees_north)\n... (7 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationPrimaryProduction_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationPrimaryProduction_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/StationPrimaryProduction/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationPrimaryProduction.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationPrimaryProduction&showErrors=false&email= National Science Foundation StationPrimaryProduction
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseThorium234 https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseThorium234.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseThorium234/ Watercolumn total Th-234 from samples collected aboard Palmer Station Antarctica LTER annual cruises off the western antarctic peninsula, 2012-2014 Total watercolumn Th-234 was determined at stations in the Palmer Station Antarctica LTER sampling grid from Jan 2012 - Jan 2014 (see Stukel et al. 2015, GBC for methods details). Th-234 can be used as a tracer for particle cycling in the upper water column. To compute carbon export from this Th-234 data please see the C:Th-234 ratio discussion in the supplement to Ducklow et al., (in review, Philosophical Transactions of the Royal Society A).\n\ncdm_data_type = Other\nVARIABLES:\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\nth234_activity\nth234_activity_error\ndeficiency\ndeficiency_error\nstation\ncast_number\nbottle_number\n https://pallter-data.marine.rutgers.edu/erddap/info/CruiseThorium234/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseThorium234.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseThorium234&showErrors=false&email= National Science Foundation CruiseThorium234
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationWaterColumnThorium.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationWaterColumnThorium https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationWaterColumnThorium.graph https://pallter-data.marine.rutgers.edu/erddap/files/StationWaterColumnThorium/ Watercolumn total Th-234, Palmer Station, 2012-2013 Total watercolumn Th-234 was determined at Stations E and B near Palmer Station from Nov 2012 - Mar 2013.  Th-234 can be used as a tracer for particle cycling in the upper water column.  To compute carbon export from this Th-234 data please see the C:Th-234 ratios that can be derived from contemporaneous sediment trap deployments.  For more details, please see Stukel et al. (in review, Global Biogeochemical Cycles).\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nstation\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\ndensity (Sea Water Density)\nth234_activity\nth234_activity_error\ndeficiency\ndeficiency_error\n https://pallter-data.marine.rutgers.edu/erddap/info/StationWaterColumnThorium/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/StationWaterColumnThorium.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationWaterColumnThorium&showErrors=false&email= National Science Foundation StationWaterColumnThorium

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact