![]() |
ERDDAP
Easier access to scientific data |
Brought to you by NOAA NMFS SWFSC ERD |
griddap | Subset | tabledap | Make A Graph | wms | files | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin | https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.graph | https://pallter-data.marine.rutgers.edu/erddap/files/dO18StableIsotopesPalmerBasin/ | Sources of oceanic freshwater content in the Palmer Basin along the western Antarctic Peninsula (PAL-LTER Study Region) determined by the stable isotope composition (d18O) of seawater. | Dataset contains measurements of the ratio of stable isotopes of oxygen in seawater taken in the Palmer Basin at stations B, E and the Palmer station seawater intake. The oceanic distribution of d18O is determined largely by the same processes that control salinity. Surface d18O reflects the magnitude and spatial distribution of freshwater inputs, and it is a conservative tracer in the ocean interior. The great benefit of d18O is obtained from the circumstances under which it exhibits behavior different to that of salinity. One such circumstance derives from the salinity and d18O values in precipitation, with salinity being constant with latitude (typically zero), while in general d18O in precipitation becomes progressively isotopically lighter toward the poles. This results in glacial ice (which derives from high-latitude precipitation) being very isotopically light, enabling d18O to be a useful tracer of glacial discharge to the ocean (e.g., Schlosser et al. 1990; Weiss et al. 1979). Another difference occurs in regions influenced by sea ice, which greatly affects salinity during its formation/melt cycle but has only minimal impact on d18O. This decoupling of the two tracers allows them to be used in tandem to quantitatively separate freshwater inputs from sea ice melt and those from meteoric sources (precipitation plus glacial discharge). For this, a simple three-endmember mass balance can be used. For details please see Meredith, M. P., H. J. Venables, A. Clarke, H. W. Ducklow, M. Erickson, M. J. Leng, J. T. M. Lenaerts, and M. R. van den Broeke. 2013. The freshwater system west of the Antarctic Peninsula: Spatial and temporal changes. Journal of Climate 26:1669-1684.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstation (Sampling Station)\ntime (Sample Date, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ntemperature (degree_C)\nsalinity (Practical Salinity, 1)\nmld (Mixed Layer Depth, m)\no18 (Oxygen Isotopes Ratio, ppt)\no18_duplicate (Oxygen Isotopes Ratio, ppt)\nevent (Event Number)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/dO18StableIsotopesPalmerBasin_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/dO18StableIsotopesPalmerBasin_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/dO18StableIsotopesPalmerBasin/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/dO18StableIsotopesPalmerBasin.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=dO18StableIsotopesPalmerBasin&showErrors=false&email= | National Science Foundation | dO18StableIsotopesPalmerBasin | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruisePrimaryProduction/ | Water column primary production from inorganic carbon uptake for 24h at simulated in situ (SIS) light levels in deck incubators, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1995 - 2019. | Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period..Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where CTD casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nevent\n... (7 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePrimaryProduction_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePrimaryProduction_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruisePrimaryProduction/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePrimaryProduction.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePrimaryProduction&showErrors=false&email= | National Science Foundation | CruisePrimaryProduction |