![]() |
ERDDAP
Easier access to scientific data |
Brought to you by NOAA NMFS SWFSC ERD |
griddap | Subset | tabledap | Make A Graph | wms | files | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseBacteria.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseBacteria | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseBacteria.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseBacteria/ | Bacterial properties in discrete water column samples at selected depths, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 2003, 2019. | Bacterial properties in discrete water column samples at selected depths, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 2003 - 2019. The microbial biogeochemistry component of PAL focuses on marine bacterioplankton, and is thus a counterpart to the phytoplankton and zooplankton components, which together provide a detailed and comprehensive description of plankton ecology in PAL-LTER. Bacteria and Archaea (hereafter called \"bacteria\") are taxonomically and metabolically diverse. In coastal and offshore surface waters Bacteria generally predominate over Archaea, but Archaea are equal or greater in abundance in the mesopelagic layer below the euphoric zone. We focus on aerobic, heterotrophic bacteria in the upper 100 m on the annual summer cruise. These bacteria oxidize recently-produced low molecular weight dissolved organic compounds released by phytoplankton and zooplankton, decomposing them back into CO2 and inorganic nutrients. Globally, marine bacteria respire an amount of carbon roughly equal to about half the daily photosynthetic production. In cold polar waters, relative bacterial activity is lower, with bacterial biomass production being equal to <5% of the daily photosynthesis. The ratio at lower latitudes is 10-20%. The factors responsible for this contrast are not entirely clear. Resolving this pattern is a key aim of the PAL microbial component. Bacterial production is generally low across the grid, relative to primary production, but with considerable spatial and annual variability. Discrete BP can reach >200mgC/m2/d following bloom-fueled high organic matter events. Across the grid and over years, BP is highly correlated with chlorophyll, highlighting the close relationship with phytoplanktonic organic matter production.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent (Event Number)\nstation (Station Name)\nbottle (Bottle Number)\ntime (Datetime GMT, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nbacterial_cell_count (Abundance, count L-1)\n... (5 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseBacteria_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseBacteria_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseBacteria/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseBacteria.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseBacteria&showErrors=false&email= | National Science Foundation | CruiseBacteria | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationBacteria.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationBacteria | https://pallter-data.marine.rutgers.edu/erddap/tabledap/StationBacteria.graph | https://pallter-data.marine.rutgers.edu/erddap/files/StationBacteria/ | Bacterial properties in discrete water column samples collected during Palmer LTER station seasons at Palmer Station Antarctica, 2002, 2019. | Bacterial properties in discrete water column samples collected during Palmer LTER station seasons at Palmer Station Antarctica, 2002 - 2019. The microbial biogeochemistry component of PAL focuses on marine bacterioplankton, and is thus a counterpart to the phytoplankton and zooplankton components, which together provide a detailed and comprehensive description of plankton ecology in PAL-LTER. Bacteria and Archaea (hereafter called \"bacteria\") are taxonomically and metabolically diverse. In coastal and offshore surface waters Bacteria generally predominate over Archaea, but Archaea are equal or greater in abundance in the mesopelagic layer below the euphoric zone. We focus on aerobic, heterotrophic bacteria in the upper 65 m at Palmer Station which oxidize recently-produced low molecular weight dissolved organic compounds released by phytoplankton and zooplankton, decomposing them back into CO2 and inorganic nutrients. Globally, marine bacteria respire an amount of carbon roughly equal to about half the daily photosynthetic production. In cold polar waters, relative bacterial activity is lower, with bacterial biomass production being equal to <5% of the daily photosynthesis. The ratio at lower latitudes is 10-20%. The factors responsible for this contrast are not entirely clear. Resolving this pattern is a key aim of the PAL microbial component. At Palmer Station, bacterial production is low (< 10 mgC/m2/d) in the winter (polar night) when there is little if any photosynthesis. There is a climatological (2003-14 average) summer peak of 50-60 mgC/m2/d in January-February but with considerable seasonal and annual variability. \\n\\nThe 2016/2017 season data contains bacteria abundances for preserved samples for comparison to abundances from live samples. See the documentation for this in the accompanying file, 2016_live_vs_preserved.pdf.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent (Event Number)\nstation (Station Name)\ndepth (m)\nbacterial_cell_count (Abundance, count L-1)\n... (5 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/StationBacteria_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/StationBacteria_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/StationBacteria/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/StationBacteria.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=StationBacteria&showErrors=false&email= | National Science Foundation | StationBacteria | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseCTDProfiles.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseCTDProfiles/ | Conductivity Temperature Depth (CTD) sensor profile data binned by depth from PAL LTER annual cruises, 1991, 2017 (ongoing). | Conductivity Temperature Depth (CTD) sensor profile data binned by depth from PAL LTER annual cruises, 1991 - 2017 (ongoing). Since 1991 (and ongoing), the PAL LTER program has deployed a SeaBird 911+ CTD mounted on a 24-bottle rosette during annual (Austral Summer) cruises plus a few supplemental cruises at other times of the year. An equal area grid oriented parallel to the average coast provides the basis for sampling, as well as specific process studies and on-the-fly scientific needs. The CTD-rosette is lowered into the ocean (usually to just above the sea-floor) using the ship's conductive-wire winch. Data is collected and displayed real-time to ensure quality and make decisions about where to collect seawater with the bottles. Bottle data is typically collected extensively in the seasaonal mixed layer and pycnocline, plus at Tmin, in the permament pycnolcine and at Tmax and Smax, as well as near the bottom. Bottle data allows measurement adn calculation of additional variables and helps ensure quality data collected via sensors. Sensors include: Pressure, Conductivity (for Salinity), Temperature, Oxygen, Transmissometer, Flourometer, Photosynthetically Available Radiation (PAR/Irrandiance). Additional Bottle Data Variables include: Phosphate, Silicate, Nitrite, Nitrate, Ammonium. After each cruise, Temperature, Conductivity and Oxygen sensors are calibrated and post-crusie processing is applied, making use of pre- and post- cruise calibrations as well as SeaBird software and algorithms for getting the best quality data. Each profile is then inspected for any issues and if needed, suitable corrections are made such as using secondary sensors (temperature, conductivity and oxygen all currently measured in duplicate), using the upcast, or flagging the data as bad.\n\ncdm_data_type = TrajectoryProfile\nVARIABLES:\nstudy_name (Cruise Name)\ntime (Datetime UTC, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\npressure (dbar)\ntemperature (degree_C)\nsalinity (1)\nsigmat (Sigma-Theta, kg m-3)\n... (5 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseCTDProfiles_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseCTDProfiles_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseCTDProfiles/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseCTDProfiles.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseCTDProfiles&showErrors=false&email= | National Science Foundation | CruiseCTDProfiles | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicCarbon.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicCarbon/ | Dissolved inorganic carbon and alkalinity of discrete water column samples, collected aboard Palmer LTER annual cruises of the Western Antarctic Peninsula, 1993, 2018. | Dissolved inorganic carbon and alkalinity of discrete water column samples, collected aboard Palmer LTER annual cruises of the Western Antarctic Peninsula, 1993 - 2018. There is a temporal uncoupling between Antarctic phytoplankton and bacterial processes. This affects the coastal ecosystem carbon cycle. Our sampling strategy and experiments are designed to evaluate the hypotheses that this uncoupling is caused by:1) dissolved organic carbon - bacterial interactions,2) temperature effects, and 3) direct competition and chemical antagonism.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent (Event Number)\nbottle (Bottle Number)\ngrid_station\ncast_number (Cast)\ngrid_line (Line)\nstation\ntime (Datetime GMT, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ndissolved_inorganic_carbon1 (DIC 1, micromoles kg-1)\ndissolved_inorganic_carbon2 (DIC 2, micromoles kg-1)\nalkalinity1 (Alkalinity 1)\nalkalinity2 (Alkalinity 2)\ntemperature (degree_C)\nsalinity (1)\nnotes\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicCarbon_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicCarbon_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicCarbon/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicCarbon.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicCarbon&showErrors=false&email= | National Science Foundation | CruiseDissolvedInorganicCarbon | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOrganicCarbon.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOrganicCarbon | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOrganicCarbon.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedOrganicCarbon/ | Dissolved organic carbon (DOC) taken from discrete water column samples collected during annual cruise along western Antarctic Peninsula, 2003-2012. | Dissolved organic carbon (Department of Commerce (DOC)) is a poorly-characterized but large and dynamic pool of actively-cycling carbon in the oceans, and one of the largest organic carbon pools on the planet. The total DOC pool consists of three major fractions: refractory DOC resistant to microbial oxidation with a turnover time of millennia; semi-labile DOC, produced and decomposed on seasonal timescales, and labile DOC, consisting of simple, recently-produced compounds with nanomolar concentrations, and turnover times of minutes-days. The background concentration of refractory DOC in the deep ocean is 35-45 micromolar. DOC concentration in the upper 100-200 meters is enhanced by 10-50 micromolar with the addition of semilabile DOC. In subtropical and temperate oceans, semilabile DOC can form an important part of the carbon export by deep vertical mixing into the oceanic mid-depths. Concentrations of semilabile DOC are lower in the polar Southern Ocean than in most other regions.\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Datetime GMT, seconds since 1970-01-01T00:00:00Z)\ngrid_line (Grid Line Intended)\ngrid_station (Grid Station Intended)\nstation (Station Name)\nbottle (Bottle Number)\ndepth (m)\ndissolved_organic_carbon (DOC, micromoles L-1)\nevent (Event Number)\nnotes\n | https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedOrganicCarbon/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedOrganicCarbon.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedOrganicCarbon&showErrors=false&email= | National Science Foundation | CruiseDissolvedOrganicCarbon | ||||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves | https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.graph | https://pallter-data.marine.rutgers.edu/erddap/files/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/ | Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991, 1993. | Photosynthesis-irradiance measurements used to derive P-I relationships and to calculate primary production for each discrete sample. Samples collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991 - 1993. Photosynthesis-irradiance measurements are used to derive P-I relationships and to calculate primary production for each discrete sample. Blue-green photosynthetron method described by Prezelin et al. (1994) were used to determine photosynthesis irradiance (P-I) relationships for collected samples. Non-linear cureve fits for the P-I data were calculated using the simplex method of Caceci & Cacheris (1984). Curve fitting provided estimates of Pmax (the light saturated rate of photosynthesis) and alpha (the affinity for photosynthesis at light-limited irradiances.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent (Event Number)\njulian_day\nincubation_start_time (seconds since 1970-01-01T00:00:00Z)\ngrid_station\nstation\ngrid_line\nbottle (Bottle Number)\ndepth (m)\nchlorophyll_a (mg m-3)\nincubation_hours (Incubation Hrs, hours)\nin_situ_temperature (In Situ Water Temperature, degree_C)\nincubation_temperature (Incubation Water Temperature, degree_C)\npmax (mg m-3 hour-1)\nalpha\nbeta (percent)\n... (8 more variables)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves&showErrors=false&email= | National Science Foundation | CruisePhotosyntheticParametersfromPhotosynthesisIrradianceCurves | ||
https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.subset | https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin | https://pallter-data.marine.rutgers.edu/erddap/tabledap/dO18StableIsotopesPalmerBasin.graph | https://pallter-data.marine.rutgers.edu/erddap/files/dO18StableIsotopesPalmerBasin/ | Sources of oceanic freshwater content in the Palmer Basin along the western Antarctic Peninsula (PAL-LTER Study Region) determined by the stable isotope composition (d18O) of seawater. | Dataset contains measurements of the ratio of stable isotopes of oxygen in seawater taken in the Palmer Basin at stations B, E and the Palmer station seawater intake. The oceanic distribution of d18O is determined largely by the same processes that control salinity. Surface d18O reflects the magnitude and spatial distribution of freshwater inputs, and it is a conservative tracer in the ocean interior. The great benefit of d18O is obtained from the circumstances under which it exhibits behavior different to that of salinity. One such circumstance derives from the salinity and d18O values in precipitation, with salinity being constant with latitude (typically zero), while in general d18O in precipitation becomes progressively isotopically lighter toward the poles. This results in glacial ice (which derives from high-latitude precipitation) being very isotopically light, enabling d18O to be a useful tracer of glacial discharge to the ocean (e.g., Schlosser et al. 1990; Weiss et al. 1979). Another difference occurs in regions influenced by sea ice, which greatly affects salinity during its formation/melt cycle but has only minimal impact on d18O. This decoupling of the two tracers allows them to be used in tandem to quantitatively separate freshwater inputs from sea ice melt and those from meteoric sources (precipitation plus glacial discharge). For this, a simple three-endmember mass balance can be used. For details please see Meredith, M. P., H. J. Venables, A. Clarke, H. W. Ducklow, M. Erickson, M. J. Leng, J. T. M. Lenaerts, and M. R. van den Broeke. 2013. The freshwater system west of the Antarctic Peninsula: Spatial and temporal changes. Journal of Climate 26:1669-1684.\n\ncdm_data_type = TimeSeries\nVARIABLES:\nstation (Sampling Station)\ntime (Sample Date, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ntemperature (degree_C)\nsalinity (Practical Salinity, 1)\nmld (Mixed Layer Depth, m)\no18 (Oxygen Isotopes Ratio, ppt)\no18_duplicate (Oxygen Isotopes Ratio, ppt)\nevent (Event Number)\n | https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/dO18StableIsotopesPalmerBasin_fgdc.xml | https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/dO18StableIsotopesPalmerBasin_iso19115.xml | https://pallter-data.marine.rutgers.edu/erddap/info/dO18StableIsotopesPalmerBasin/index.htmlTable | https://pal.lternet.edu/![]() | http://pallter-data.marine.rutgers.edu/erddap/rss/dO18StableIsotopesPalmerBasin.rss | https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=dO18StableIsotopesPalmerBasin&showErrors=false&email= | National Science Foundation | dO18StableIsotopesPalmerBasin |