NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinCensus.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinCensus https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinCensus.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinCensus/ Adelie penguin area-wide breeding population census, 1991, present. Adelie penguin area-wide breeding population census, 1991 - present. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nThe PAL study region includes five main islands on which Adélie penguin colonies have historically occurred.  These are censused synoptically once a year to determine the overall size of the breeding population.  The optimal census date may vary by a few days each season, but ultimately tries to capture the week following peak egg laying when the total number of breeding pairs reaches a maximum.  The timing of this census is assisted by the REPRO and HUMPOP data, which provide a daily to weekly rate of change in breeding adult population numbers as new nests are initiated.  This census is useful for a number of assessments, one of the most critical being that it directly reflects the effects of environmental variability on adult overwinter survival.\\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\nnum_breeding_pairs (Breeding Pairs)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinCensus/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinCensus.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinCensus&showErrors=false&email= National Science Foundation AdeliePenguinCensus
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinPopulationonHumbleIsland.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinPopulationonHumbleIsland https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinPopulationonHumbleIsland.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinPopulationonHumbleIsland/ Adelie penguin breeding population arrival chronology on Humble Island, 1991, present.\\t Adelie penguin breeding population arrival chronology on Humble Island, 1991 - present.\\t. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nThe arrival chronology of adult Adélie penguins on Humble Island is documented annually through island-wide censuses performed as ice and weather conditions permit.  Recorded data (numbers of adults present) provide a measure of the number of adults arriving daily at the breeding colonies, a metric that is sensitive to environmental conditions such as sea ice extent during late winter and early spring.  These data are also used in combination with other metrics to determine the optimal window for other, more extensive area-wide breeding population censuses (see CENSUS). \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\nnum_breeding_pairs (Adults)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinPopulationonHumbleIsland/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinPopulationonHumbleIsland.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinPopulationonHumbleIsland&showErrors=false&email= National Science Foundation AdeliePenguinPopulationonHumbleIsland
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinFledglingWeights.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinFledglingWeights https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinFledglingWeights.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinFledglingWeights/ Adelie penguin chick fledging weights, 1991, present.\\t Adelie penguin chick fledging weights, 1991 - present.\\t. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nAdélie penguin chick fledging weights are obtained every two days (or as ice and weather conditions permit) at three beaches on Humble Island beginning when the first fledglings appear on any one of these beaches, and continuing until the last fledglings depart.  These data are generally collected during the first three weeks of February by first censusing the total number of chicks present on each beach, and then sub-sampling 30% of the censused population.  The metric of interest is the weight (in grams) of individual chicks, which is an important predictor of overwinter survival and thus future recruitment into the population as breeding adults.  \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\nband_number\nweight (gram)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinFledglingWeights/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinFledglingWeights.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinFledglingWeights&showErrors=false&email= National Science Foundation AdeliePenguinFledglingWeights
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinAdultandChickCounts.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinAdultandChickCounts https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinAdultandChickCounts.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinAdultandChickCounts/ Adelie penguin colony-specific chick production, 1991, present. Adelie penguin colony-specific chick production, 1991 - present. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nThe PAL study region includes five main islands on which Adélie penguin colonies have historically occurred.  These are censused synoptically once a year to determine the total number of chicks produced in the area.  The optimal date for this census may vary by a few days each season, but ultimately tries to capture the week following the time when approximately 2/3 of the chicks have crèched.  The timing of this census is assisted by the REPRO data, which provide a daily to weekly rate of change in the number of crèched chicks.  Because the colonies used in this area-wide census are the same as those used to determine the overall annual breeding population, one of the key metrics obtained is an integrated number of breeding success (chicks crèched/breeding pair).  These data have provided valuable insights into the marine and terrestrial factors that influence Adélie penguin mean population fitness.  \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\n... (6 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinAdultandChickCounts/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinAdultandChickCounts.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinAdultandChickCounts&showErrors=false&email= National Science Foundation AdeliePenguinAdultandChickCounts
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinDietLog.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinDietLog/ Adelie penguin diet metadata, 1991, present. Adelie penguin diet metadata, 1991 - present. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\n\\nAdélie penguin diet samples are obtained during the chick-rearing phase of the breeding season (January -February) using stomach lavage (water off-loading method).  Five adult penguins are typically sampled every 5-7 days (weather permitting) during this period by capturing birds near their breeding colonies as they return from foraging in the evenings.  Before lavaging, birds are weighed and measured to obtain an index of gender and condition, and are then released at the site where they were initially captured.  Variability in adult condition within and between seasons provides an important index of foraging effort and other related metrics.      \\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\ntime (Sample Date/Time, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinDietLog/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinDietLog.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinDietLog&showErrors=false&email= National Science Foundation AdeliePenguinDietLog
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinBandsSeen.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinBandsSeen/ Adelie penguin flipper band resightings, 1991, 2006. Adelie penguin flipper band resightings, 1991 - 2006. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\n Annually between 1991 and 1998, a subsample of 1000 Adélie penguin crèche-age chicks were flipper-banded on Humble Island as part of demographic studies to determine long-term survival and recruitment.  This was achieved through resighting efforts in the years that followed the banding work through 2006 when the last banded bird was observed.  The decision to end the banding studies is in concordance with other national and international efforts to limit this work due to evidence that flipper- banding penguins may affect survival.   \\n\n\ncdm_data_type = Other\nVARIABLES:\nindex\nstudy_name (Study)\ntime (Date GMT, seconds since 1970-01-01T00:00:00Z)\nisland_name (Island)\ncolony_code (Colony)\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinBandsSeen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinBandsSeen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinBandsSeen&showErrors=false&email= National Science Foundation AdeliePenguinBandsSeen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinReproductionSuccess.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinReproductionSuccess https://pallter-data.marine.rutgers.edu/erddap/tabledap/AdeliePenguinReproductionSuccess.graph https://pallter-data.marine.rutgers.edu/erddap/files/AdeliePenguinReproductionSuccess/ Adelie penguin reproductive success, 1991, present.\\t Adelie penguin chick fledging weights, 1991 - present.\\t. The fundamental long-term objective of the seabird component of the Palmer LTER (PAL) has been to identify and understand the mechanistic processes that regulate the mean fitness (population growth rate) of regional penguin populations.  Two hypotheses have guided this research, with one suggesting that population mean fitness is best explained by changes in regional krill biomass, and the other proposing that long-term changes in sea ice affects mean fitness by tipping the balance in favor of one species over another in accordance with species-specific evolved life history affinities to sea ice.  Although these hypotheses are not mutually exclusive, current evidence in the PAL region tends to favor the latter over the former.  Since the inception of PAL, Adélie penguin populations have effectively collapsed, while those of gentoo and chinstrap penguins have increased dramatically, trends that are spatially and temporally coherent with decreasing regional sea ice duration. Adélie penguins are an ice-obligate polar species whose life history is intimately linked to the presence of sea ice, while chinstrap and gentoo penguins are ice-intolerant species whose life histories evolved in the sub-Antarctic, where sea ice is a less permanent feature of the marine ecosystem.  In contrast, although krill constitute the most important component of the summer diets by mass of these three penguin species, changes in PAL krill abundances have exhibited no long-term trends, and thus fail to explain the divergent patterns in penguin populations evident in our time series.     \\n\\nA sample of Adélie penguin nests from colonies on Humble Island is randomly selected annually and checked daily (or as ice and weather conditions permit) throughout the breeding season from the time adults arrive until the chick crèche phase of the reproductive cycle.  Recorded data (the timing of egg laying, hatching and crèching) provide a measure of annual breeding chronology, and the number of chicks crèched, an estimate of reproductive success (chicks crèched/breeding pair).\\n\n\ncdm_data_type = Other\nVARIABLES:\nstudy_name (Study)\nisland_name (Island)\ncolony_code (Colony)\nsite_number\nnest_number\negg1_lay_date (Egg 1 Lay Date)\n... (10 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/info/AdeliePenguinReproductionSuccess/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/AdeliePenguinReproductionSuccess.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=AdeliePenguinReproductionSuccess&showErrors=false&email= National Science Foundation AdeliePenguinReproductionSuccess

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact