NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicNutrients/ Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991, 2019. Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991 - 2019. The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every Conductivity, Temperature, Depth (CTD)/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (17 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicNutrients_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicNutrients_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicNutrients/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicNutrients.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicNutrients&showErrors=false&email= National Science Foundation CruiseDissolvedInorganicNutrients
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseNitrateUptake.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseNitrateUptake/ Nitrate (15N) Uptake from samples collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 2012-2014 Nitrate uptake by the bulk phytoplankton community was determined using tracer (<10%) additions of labeled 15-NO3. Samples were collected by Go-Flo from 5 depths 0, 5, 10, 20, 65 m and incubated for 24 h at light levels of 100%, 50%, 25%, 10%, and 0% surface irradiance, respectively.\n\ncdm_data_type = Other\nVARIABLES:\ndepth (m)\nincubation_light_level (percent)\nnitrate (Mole Concentration Of Nitrate In Sea Water, micromoles L-1)\nnitrate_uptake (Mole Concentration Of Nitrate In Sea Water, micromoles L-1 day-1)\nstation\ncast_number\nevent\nbottle_number\n https://pallter-data.marine.rutgers.edu/erddap/info/CruiseNitrateUptake/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseNitrateUptake.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseNitrateUptake&showErrors=false&email= National Science Foundation CruiseNitrateUptake
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseEventLog.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseEventLog/ Palmer (PAL) log of events aboard Palmer LTER cruises off the coast of the Western Antarctic Peninsula (cruise happenings ordered by time) is a meta dataset, including lat-lon, datetime, activity, events, etc, 1991, 2019. Palmer (PAL) log of events aboard Palmer LTER cruises off the coast of the Western Antarctic Peninsula (cruise happenings ordered by time) is a meta dataset, including lat-lon, datetime, activity, events, etc, 1991 - 2019. The event log for the Palmer LTER research cruises provides a mapping of sampling and other research activities to spatial, temporal and other variables. Event numbers are used to coordinate relational indexes and provide users of the data with a high-level index for relating measurements across research components.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nevent\nevent_group\ncast_number\nevent_name\ngrid_station\nstation\ngrid_line\ncalculated_grid_station\ncomments\nnotes\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseEventLog_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseEventLog_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseEventLog/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseEventLog.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseEventLog&showErrors=false&email= National Science Foundation CruiseEventLog
https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.graph https://pallter-data.marine.rutgers.edu/erddap/files/ParticulateOrganicCarbonandNitrogen/ Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991, 2018. Cruise PD94-01 not included in time series for lack of samples Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991 - 2018. Cruise PD94-01 not included in time series for lack of samples. All organisms are composed of organic matter. Organic matter is synthesized from dissolved inorganic carbon (dissolved CO2) and inorganic nutrients by phytoplankton photosynthesis, and consumed (oxidized) by respiration by heterotrophs (zooplankton and bacteria). The organic matter in seawater is a variable mixture of dissolved and particulate organic matter (DOM and Princeton Ocean Model (POM)). Typically DOM predominates over POM by an order of magnitude, but the relative amount of POM can be highly enhanced during large phytoplankton blooms. The principal elemental components of POM include organic carbon (POC), organic nitrogen (PN), there is no particulate inorganic N) and phosphorus (POP). These elements exist in a relatively stable, characteristic ratio of 106:6:1 (C:N:P) in seawater, known as the Redfield Ratio. Marine particulate matter is a complex mixture of live and dead plankton and detritus, and of carbohydrates, proteins, lipids and nucleic acids. POC and PN are enhanced in the euphoric zone, reflecting their origin by photosynthesis. The particulate pool is also a complex assemblage of particles of different sizes, shapes and densities. A simplified scheme divides the particles into large, rapidly sinking particles (10s - 100s of meters per day) and smaller, suspended particles. The transition between small particles and dissolved organic matter is typically specified by filtration through GF/F filters. POC and PN are analyzed for samples in the upper 100 meters on all regular grid samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\nstation (u2)\ncast_number\nbottle\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/ParticulateOrganicCarbonandNitrogen_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/ParticulateOrganicCarbonandNitrogen_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/ParticulateOrganicCarbonandNitrogen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/ParticulateOrganicCarbonandNitrogen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=ParticulateOrganicCarbonandNitrogen&showErrors=false&email= National Science Foundation ParticulateOrganicCarbonandNitrogen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseHighPerformanceLiquidChromatographyPigments/ Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991, 2016. Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991 - 2016. Phytoplankton pigment sampling was led by Prezelin from 1991-1994, and then by Vernet from 1995-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods and the HPLC. Data is unavailable for the LMG10-01 cruise due to instrumentation problems and for the LMG12-01 cruise due to a freezer failure which resulted in the loss of samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ncast_number\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\n... (29 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseHighPerformanceLiquidChromatographyPigments_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseHighPerformanceLiquidChromatographyPigments_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseHighPerformanceLiquidChromatographyPigments/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseHighPerformanceLiquidChromatographyPigments.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseHighPerformanceLiquidChromatographyPigments&showErrors=false&email= National Science Foundation CruiseHighPerformanceLiquidChromatographyPigments
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruisePrimaryProduction/ Water column primary production from inorganic carbon uptake for 24h at simulated in situ (SIS) light levels in deck incubators, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1995 - 2019. Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period..Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where CTD casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nevent\n... (7 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePrimaryProduction_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePrimaryProduction_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruisePrimaryProduction/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePrimaryProduction.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePrimaryProduction&showErrors=false&email= National Science Foundation CruisePrimaryProduction
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseThorium234 https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseThorium234.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseThorium234/ Watercolumn total Th-234 from samples collected aboard Palmer Station Antarctica LTER annual cruises off the western antarctic peninsula, 2012-2014 Total watercolumn Th-234 was determined at stations in the Palmer Station Antarctica LTER sampling grid from Jan 2012 - Jan 2014 (see Stukel et al. 2015, GBC for methods details). Th-234 can be used as a tracer for particle cycling in the upper water column. To compute carbon export from this Th-234 data please see the C:Th-234 ratio discussion in the supplement to Ducklow et al., (in review, Philosophical Transactions of the Royal Society A).\n\ncdm_data_type = Other\nVARIABLES:\ntime (seconds since 1970-01-01T00:00:00Z)\ndepth (m)\nsalinity (Sea Water Practical Salinity, 1)\nth234_activity\nth234_activity_error\ndeficiency\ndeficiency_error\nstation\ncast_number\nbottle_number\n https://pallter-data.marine.rutgers.edu/erddap/info/CruiseThorium234/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseThorium234.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseThorium234&showErrors=false&email= National Science Foundation CruiseThorium234

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact