NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseChlorophyll.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseChlorophyll/ Chlorophyll and phaeopigments from water column samples, collected at selected depths aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991 - 2019. Phytoplankton chlorophyll sampling was led by Smith from 1991-2002, and then by Vernet from 2003-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Chlorophyll a (Chl a) is the principal photosynthetic pigment of phytoplankton, and is used as a proxy measurement for estimating phytoplankton biomass in water samples. Chl a concentrations reflect the distribution of active phytoplankton spatially and with depth in the water column and their changes over time. Phaeopigments are non-photosynthetic pigments that are degradation products of phytoplankton chlorophylls which form during and after phytoplankton blooms. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80°C until analysis at Palmer Station following the completion of the cruise. Fluorometric chlorophyll and phaeopigment analysis is conducted at Palmer Station through acetone extraction of the GF/F filters and measurement of the extract on a Turner 10AU Fluorometer. The primary source of error for phaeopigment measurement is Chlorophyll b. If high amounts of Chlorophyll b are present in the sample, phaeopigments may be overestimated.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nchlorophyll_a (mass_concentration_of_chlorophyll_a_in_sea_water, mg m-3)\nphaeopigment (mg m-3)\nevent\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\ngrid_line\ngrid_station\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\n... (7 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseChlorophyll_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseChlorophyll_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseChlorophyll/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseChlorophyll.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseChlorophyll&showErrors=false&email= National Science Foundation CruiseChlorophyll
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedInorganicNutrients.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedInorganicNutrients/ Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991, 2019. Dissolved inorganic nutrients including 5 macro nutrients: silicate, phosphate, nitrate, nitrite, and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991 - 2019. The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every Conductivity, Temperature, Depth (CTD)/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season. .The inorganic plant macronutrients dissolved phosphate, silicate, nitrate, nitrite and ammonium are the major sources of nutrition for phytoplankton growth in seawater (with sunlight and inorganic carbon). Macronutrient distributions reflect the large-scale circulation patterns in the oceans and are useful properties to delineate water masses. Dissolved inorganic nutrients samples are typically collected in every CTD/Rosette cast performed on the annual LTER cruises along the western Antarctic Peninsula. Water samples are analyzed for dissolved nutrients with recognized standard oceanographic protocols for nutrient autoanalyzers (continuous flow analyzers). In Antarctic waters, dissolved inorganic macronutrients are seldom depleted to limiting concentrations except during heavy prolonged phytoplankton blooms. This is due to the fact that phytoplankton growth is more often limited by light or iron, and to the short growing season.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\n... (17 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedInorganicNutrients_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedInorganicNutrients_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedInorganicNutrients/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedInorganicNutrients.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedInorganicNutrients&showErrors=false&email= National Science Foundation CruiseDissolvedInorganicNutrients
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOxygen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOxygen https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseDissolvedOxygen.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseDissolvedOxygen/ Dissolved oxygen of discrete water column samples at selected depths collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1993, 2012. Dissolved oxygen of discrete water column samples at selected depths collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1993 - 2012. Oxygen is produced by phytoplankton photosynthesis and consumed by respiration of phytoplankton, zooplankton and bacteria. Oxygen also enters and exits the ocean via physical exchange with the atmosphere. Oxygen concentrations in the surface ocean may be supersaturated by photosynthesis and turbulence enhancing air-sea exchange via bubble injection; or undersaturated due to excess respiration. In cases where exchange with the atmosphere is limited, and/or respiration exceeds photosynthesis, oxygen concentration can be reduced to very low levels (hypoxia) or entirely depleted (anoxia). This is uncommon in cold Antarctic Seas where respiration is depressed and oxygen solubility is enhanced by low temperature. Different water masses have characteristic oxygen concentrations which serve as tracers for diagnosing physical mixing and advection. Dissolved oxygen was analyzed by Winkler Titration (see Methods) in Conductivity, Temperature, Depth (CTD)-Rosette bottle samples at all depths sampled until 2012. This measurement was discontinued in 2013. The CTD has duplicate oxygen electrodes that provide continuous vertical profiles of oxygen concentration at all depths on all casts. The vessel also has continuous underway, Optode determination of dissolved oxygen in the surface (ship's intake at 6 meters depth) on all cruises. Finally we now routinely measure net community production by Equilibrator Inlet Mass Spectroscopy (EIMS) on LTER cruises\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nevent\ngrid_line\ngrid_station\nbottle\noxygen_concentration (mL L-1)\noxygen_concentration_moles (micromoles L-1)\ncomments\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseDissolvedOxygen_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseDissolvedOxygen_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseDissolvedOxygen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseDissolvedOxygen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseDissolvedOxygen&showErrors=false&email= National Science Foundation CruiseDissolvedOxygen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen https://pallter-data.marine.rutgers.edu/erddap/tabledap/ParticulateOrganicCarbonandNitrogen.graph https://pallter-data.marine.rutgers.edu/erddap/files/ParticulateOrganicCarbonandNitrogen/ Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991, 2018. Cruise PD94-01 not included in time series for lack of samples Particulate organic carbon and nitrogen measurements from water column sample bottles, collected aboard Palmer LTER annual cruises off the Western Antarctic Peninsula, 1991 - 2018. Cruise PD94-01 not included in time series for lack of samples. All organisms are composed of organic matter. Organic matter is synthesized from dissolved inorganic carbon (dissolved CO2) and inorganic nutrients by phytoplankton photosynthesis, and consumed (oxidized) by respiration by heterotrophs (zooplankton and bacteria). The organic matter in seawater is a variable mixture of dissolved and particulate organic matter (DOM and Princeton Ocean Model (POM)). Typically DOM predominates over POM by an order of magnitude, but the relative amount of POM can be highly enhanced during large phytoplankton blooms. The principal elemental components of POM include organic carbon (POC), organic nitrogen (PN), there is no particulate inorganic N) and phosphorus (POP). These elements exist in a relatively stable, characteristic ratio of 106:6:1 (C:N:P) in seawater, known as the Redfield Ratio. Marine particulate matter is a complex mixture of live and dead plankton and detritus, and of carbohydrates, proteins, lipids and nucleic acids. POC and PN are enhanced in the euphoric zone, reflecting their origin by photosynthesis. The particulate pool is also a complex assemblage of particles of different sizes, shapes and densities. A simplified scheme divides the particles into large, rapidly sinking particles (10s - 100s of meters per day) and smaller, suspended particles. The transition between small particles and dissolved organic matter is typically specified by filtration through GF/F filters. POC and PN are analyzed for samples in the upper 100 meters on all regular grid samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\nstation (u2)\ncast_number\nbottle\n... (5 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/ParticulateOrganicCarbonandNitrogen_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/ParticulateOrganicCarbonandNitrogen_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/ParticulateOrganicCarbonandNitrogen/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/ParticulateOrganicCarbonandNitrogen.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=ParticulateOrganicCarbonandNitrogen&showErrors=false&email= National Science Foundation ParticulateOrganicCarbonandNitrogen
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruiseHighPerformanceLiquidChromatographyPigments.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruiseHighPerformanceLiquidChromatographyPigments/ Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991, 2016. Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991 - 2016. Phytoplankton pigment sampling was led by Prezelin from 1991-1994, and then by Vernet from 1995-2008. Schofield is the third, and current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Phytoplankton have a suite of accessory pigments in addition to Chlorophyll a, including other Chlorophyll's (e.g. Chlorophyll b), Xanthophylls, and Carotenes. These accessory pigments can be used as chemotaxonomic markers to assess the composition and distribution of the phytoplankton community. For example, Fucoxanthin is a marker pigment of Diatoms, whereas Alloxanthin is a marker pigment of Cryptophytes. Accessory pigments also assist in photoacclimation and photoprotective processes. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are preformed and in surface waters at underway stations, where CTD casts are not done, using the ship's flow-through seawater system. Water samples are filtered onto GF/F filters, and filters kept frozen at -80C until analysis. HPLC analysis is completed following Wright et al (1991). Following the guidelines set by NASA SeaHARRE, we use an internal standard and replicate injects on the HPLC to track recovery and replicability of the pigment extraction methods and the HPLC. Data is unavailable for the LMG10-01 cruise due to instrumentation problems and for the LMG12-01 cruise due to a freezer failure which resulted in the loss of samples.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\nevent\ncast_number\nbottle\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\ngrid_line\n... (29 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruiseHighPerformanceLiquidChromatographyPigments_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruiseHighPerformanceLiquidChromatographyPigments_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruiseHighPerformanceLiquidChromatographyPigments/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruiseHighPerformanceLiquidChromatographyPigments.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruiseHighPerformanceLiquidChromatographyPigments&showErrors=false&email= National Science Foundation CruiseHighPerformanceLiquidChromatographyPigments
https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.subset https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction https://pallter-data.marine.rutgers.edu/erddap/tabledap/CruisePrimaryProduction.graph https://pallter-data.marine.rutgers.edu/erddap/files/CruisePrimaryProduction/ Water column primary production from inorganic carbon uptake for 24h at simulated in situ (SIS) light levels in deck incubators, collected aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1995 - 2019. Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where Conductivity, Temperature, Depth (CTD) casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period..Primary Production experiments were led by Vernet from 1995-2008. Schofield is the current lead, beginning in 2009. Methods have been kept consistent as much as possible over the full time series and different Principal Investigators. Primary production is the uptake of inorganic carbon and assimilation of it into organic matter by phytoplankton. Primary production rates, expressed as mgC per m3 per day were measured by the uptake of radioactive (14C) sodium bicarbonate. Water samples are collected throughout the water column along the Western Antarctic Peninsula at regular LTER grid stations where CTD casts are performed. Water is put into borosilicate bottles, inoculated with 1 uCi of NaH14CO3 per bottle, and incubated in an outdoor deck incubator. The incubator is plumbed to the ship sea water system to maintain ambient seawater temperature and bottles are screened to in situ light levels. The uptake of 14C-bicarbonate by the phytoplankton was measured in a scintillation counter after a 24-hour incubation period.\n\ncdm_data_type = Trajectory\nVARIABLES:\nstudy_name (Study)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\ndepth (m)\nevent\n... (7 more variables)\n https://pallter-data.marine.rutgers.edu/erddap/metadata/fgdc/xml/CruisePrimaryProduction_fgdc.xml https://pallter-data.marine.rutgers.edu/erddap/metadata/iso19115/xml/CruisePrimaryProduction_iso19115.xml https://pallter-data.marine.rutgers.edu/erddap/info/CruisePrimaryProduction/index.htmlTable https://pal.lternet.edu/ (external link) http://pallter-data.marine.rutgers.edu/erddap/rss/CruisePrimaryProduction.rss https://pallter-data.marine.rutgers.edu/erddap/subscriptions/add.html?datasetID=CruisePrimaryProduction&showErrors=false&email= National Science Foundation CruisePrimaryProduction

 
ERDDAP, Version 2.26
Disclaimers | Privacy Policy | Contact